Lecture 10
Ambiguity
Instructor: Hossein Hojjat
February 13, 2017
• Context-free grammar is a 4-tuple \(G = (T, N, S, R) \)

• Parse trees are trees where
 - root is labeled with the start symbol \(S \)
 - internal nodes are labeled with symbols \(\in N \)
 - leaf nodes are labeled with symbols \(\in T \cup \{\epsilon\} \)
 - if \(v \) is a node with label \(X \) and its child nodes \(v_1, \cdots, v_n \) are labeled with \(X_1, \cdots, X_n \) then
 \[X \rightarrow X_1 \cdots X_n \] is a production rule \(\in R \)

Example.

Grammar: \(G = (\{(\), \}\), \{S\}, S, R) \) where

\[
R = \left\{ S \rightarrow SS \mid (S) \mid () \right\}
\]

Derivation:

\[
S \Rightarrow SS \Rightarrow (S)S \Rightarrow (())S \Rightarrow (())()
\]
With this grammar there is a choice of variables to expand

Sample derivation:

\[S \Rightarrow SS \Rightarrow SSS \Rightarrow S(S)S \Rightarrow S()() \Rightarrow ()()() \]

Leftmost derivation: always expand the leftmost variable first

\[S \Rightarrow SS \Rightarrow SSS \Rightarrow ()SS \Rightarrow ()()S \Rightarrow ()()() \]

Rightmost derivation: always expand the rightmost variable first

\[S \Rightarrow SS \Rightarrow SSS \Rightarrow SS() \Rightarrow S()() \Rightarrow ()()() \]
Ambiguous Grammars

- Ambiguous CFG:
 there is a word in the language that has two or more parse trees
- Example:

 $$S \rightarrow SS \mid (S) \mid ()$$

 Two parse trees for \((())()()\)
Ambiguity, Left- and Rightmost Derivations

- To show that a grammar is ambiguous:
 1) Give two different parse trees for a word, or
 2) Give two different leftmost derivations for a word, or
 3) Give two different rightmost derivations for a word

- One leftmost and one rightmost derivation for a word is not sufficient
- Leftmost and rightmost derivations might correspond to the same parse tree
Ambiguity is Bad

- Sometimes ambiguity in grammar can leave meaning of some programs ill-defined

Example: \[<\text{cmd}> ::= \text{if } <\text{bool}> \text{ then } <\text{cmd}> \]
\[\mid \text{if } <\text{bool}> \text{ then } <\text{cmd}> \text{ else } <\text{cmd}> \]

- Do not know if else clause is paired with the outermost or with the innermost then

\[
\text{if } (x > 0) \text{ then } \\
\quad \text{if } (y > 0) \text{ then } \\
\quad \text{print}(1) \\
\text{else } \\
\text{print}(2)
\]
Ambiguity

- Ambiguity is a property of grammars not languages
- For the balanced parentheses language, here is another CFG which is unambiguous:

\[
B \rightarrow (RB \mid \epsilon \\
R \rightarrow) \mid (RR)
\]

- Start symbol \(B \) generates balanced strings
- \(R \) generates strings that have one more right parentheses than left
Example: Unambiguous Grammar

\[B \rightarrow (RB \mid \epsilon) \]
\[R \rightarrow) \mid (RR \]

- This grammar constructs a unique leftmost derivation for a given balanced string of parentheses
- When scanning the input string from left to right:
 - If we need to expand \(B \):
 - If the next symbol is (then use \(B \rightarrow (RB \)
 - If it is at the end then use \(B \rightarrow \epsilon \)
 - If we need to expand \(R \):
 - If the next symbol is) then use \(R \rightarrow) \)
 - If the next symbol is (then use \(R \rightarrow (RR \)
Theorem
The problem of deciding whether a given CFG is ambiguous is undecidable.

- Bad news: There is no general algorithm to remove ambiguity from a CFG.
- More bad news: Some CFL's have only ambiguous CFG's.
- **CFL** L is inherently ambiguous if all grammars for L are ambiguous.
- There are heuristics that can be used to remove ambiguity from a grammar.
Inherent Ambiguity

- $L = \{0^i1^j2^k \mid i = j \text{ or } j = k\}$
- Intuitively strings of the form $0^n1^n2^n$ can be generated by two different parse trees:
 - one based on checking the 0’s and 1’s,
 - the other based on checking the 1’s and 2’s
One Possible Ambiguous Grammar for $L = \{0^i1^j2^k \mid i = j \text{ or } j = k\}$

$S \rightarrow AB \mid CD$

$A \rightarrow 0A1 \mid 01$

$B \rightarrow 2B \mid 2$

$C \rightarrow 0C \mid 0$

$D \rightarrow 1D2 \mid 12$

- A generates equal numbers 0’s and 1’s
- B generates any number of 2’s
- C generates any number of 0’s.
- D generates equal numbers 1’s and 2’s
One Possible Ambiguous Grammar for

\[L = \{0^i1^j2^k \mid i = j \text{ or } j = k\} \]

- \[S \rightarrow AB \mid CD \]
- \[A \rightarrow 0A1 \mid 01 \]
- \[B \rightarrow 2B \mid 2 \]
- \[C \rightarrow 0C \mid 0 \]
- \[D \rightarrow 1D2 \mid 12 \]

- There are two derivations of every string with equal numbers of 0’s, 1’s and 2’s

\[S \Rightarrow AB \Rightarrow 01B \Rightarrow 012 \]
\[S \Rightarrow CD \Rightarrow 0D \Rightarrow 012 \]
Question
Show that the following grammar is ambiguous:

\[A \rightarrow BC \]
\[B \rightarrow 1B1 \mid 1 \]
\[C \rightarrow 1C1 \mid \epsilon \]
Ambiguity Exercise

Question
Show that the following grammar is ambiguous:

\[
\begin{align*}
A & \rightarrow BC \\
B & \rightarrow 1B1 \mid 1 \\
C & \rightarrow 1C1 \mid \epsilon
\end{align*}
\]

Answer
Two different leftmost derivations for 111

- \[A \Rightarrow BC \Rightarrow 1C \Rightarrow 11C1 \Rightarrow 111\]
- \[A \Rightarrow BC \Rightarrow 1B1C \Rightarrow 111C \Rightarrow 111\]
Chomsky Normal Form

• Consider the grammar $G_\epsilon = (\emptyset, \{S\}, S, R)$ with the following production rules

$$S \rightarrow SSSSSS \mid \epsilon$$

• Grammar is obviously ambiguous

• It has infinitely many parse trees which can be arbitrarily large!
Chomsky Normal Form

- Bad news: we cannot eliminate ambiguity from CFGs in general
- Good news: we can at least eliminate the possibility to have infinitely many parse trees for a given string
- There is an equivalent grammar in Chomsky Normal Form (CNF) for any context-free grammar
- Grammar in CNF guarantees
 - every string has a finite number of parse trees
 - every parse tree for a given string has the same size (binary tree)
A CFG is in Chomsky Normal Form if each rule is of the form

\[A \rightarrow BC \]
\[A \rightarrow a \]

where

- \(a \) is any terminal
- \(A, B, C \) are non-terminals
- \(B, C \) cannot be start variable

We allow the rule \(S \rightarrow \varepsilon \) if \(\varepsilon \in L \)
• For the balanced parentheses language,

\[S \rightarrow SS \mid (S) \mid () \]

• Equivalent Chomsky Normal Form (CNF) grammar:

\[
S \rightarrow SS \\
S \rightarrow LA \\
A \rightarrow SR \\
S \rightarrow LR \\
L \rightarrow (\\
R \rightarrow)
\]