There is an entire course about Coq at RIT

“Mechanized Meta-Theory for Programming Language (CSCI-799)”

Useful References

• “Software Foundations” by Pierce et al.
 • http://www.cis.upenn.edu/~bcpierce/sf/

• “Certified Programming with Dependent Types” by Adam Chlipala
 • http://adam.chlipala.net/cpdt/
Useful Proof Methods

- Proof by example
 - The author gives only the case $n = 2$ and suggests that it contains most of the ideas of the general proof
- Proof by intimidation
 - “Trivial” or “obvious.”
- Proof by vigorous handwaving
 - Works well in a classroom, seminar, or workshop setting.
- Proof by cumbersome notation
 - Best done with access to at least four alphabets, special symbols, and the newest release of LaTeX.
- Proof by forward reference
 - Reference is usually to a forthcoming paper of the author, which is often not as forthcoming as at first.

We do not use any of these proof methods in this course!

Selected from http://mfleck.cs.illinois.edu/proof.html
Theorem Provers

- Computer programs that can generate and check mathematical theorems
- Theorems are expressed in some mathematical logic
 - such as propositional logic, predicate logic, first-order logic, ...

Diagram:

```
Provided by User ⊆ Theorem Statement (in some logic) ↘
             └── Theorem Prover (e.g. Coq)
                 └── Yes  No
```
Proof Checking vs. Proof Generation

- A formal proof is a list of formulas each of which is justified by an axiom or an inference rule applied to earlier formulas.

<table>
<thead>
<tr>
<th>Formulas</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>Axiom</td>
</tr>
<tr>
<td>f_2</td>
<td>Rule 2 and f_1</td>
</tr>
<tr>
<td>f_3</td>
<td>Rule 4 and f_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Theorem</td>
<td>...</td>
</tr>
</tbody>
</table>

- Formal proofs are easy to check mechanically:
 Just make sure the justifications are applied correctly.

- Proof generation is hard:
 - Generate a list of formulas, each of which has valid justification
 - Last formula should be the desired theorem
• What does the user provide?
• Statement of theorem expressed in the logic of the system
• For fully automatic provers, this is enough: all you do is give your theorem and push “Go”
 - Example: SPASS, ACL2, Princess
• Semi-automatic provers require user intervention to guide the proof
 - Example: Coq, Isabelle
• Fully automatic provers can’t prove as many theorems as “semi-automatic” provers
User Input

- User must provide some kind of hints to help the semi-automatic prover
 - Often provided in the same file
- Least useful hint: “A proof exists - search forever until you find it”
- Most useful hint: “Here is the proof: ...”

Most semi-automatic provers take a middle path and require hints between the two extremes

- Statement of key lemmas (useful intermediate results)
- Proof outline (how the lemmas connect)
- Key idea in proof (prove by induction on n)
- Proof script (list of medium-sized steps in the proof)
Theorem Prover Overview

Theorem Statement
(in some logic)
+ Hints

Theorem Prover
(e.g. Coq)

Provided by User

Yes

No
Many theorems share commonly used definitions and lemmas

Examples.

Naturals

- Definition (zero & successor)
- Facts about naturals (e.g., $a + b = b + a$) and their proofs

Integers

- Definition (naturals & negative naturals & zero)
- Facts about integers (e.g., $a + (a) = 0$) and their proofs
Theorem Prover Overview

Theorem Statement (in some logic) + Hints

Provided by User

Yes

Theorem Library

Theorem Prover (e.g. Coq)

No
Coq

- Coq is a proof assistant developed since 1984 by INRIA (France)
- Calculus of Inductive Constructions is the formalism behind Coq
 - Typed lambda-calculus with dependent types and inductive types
- French have a tradition of naming their software as animal species (e.g. Caml)
- In French, “coq” means rooster and it sounds like the initials of the Calculus of Constructions (CoC)
• Research project lead by a group of universities
 • Penn, MIT, Yale, Princeton
• Push forward the state of the art in applying Coq to verify realistic software and hardware
 • https://deepspec.org/
Coq: Popular & Successful

- CompCert: a realistic, industrially-usable compiler for the C language
- http://compcert.inria.fr/
- 100k lines of Coq and 6 person-years of effort
- Among the largest ever proof performed with a proof assistant

“Closing the gap - The formally verified compiler CompCert”, (SSS 2017)

Finding and Understanding Bugs in C Compilers

Xuejun Yang, Yang Chen, Eric Eide, John Regehr
University of Utah, School of Computing
{joyang, chenyang, eide, regehr}@cs.utah.edu

[PLDI'11]

“The striking thing about our CompCert results is that the middle end bugs we found in all other compilers are absent. As of early 2011, the under-development version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task. The apparent unbreakability of CompCert supports a strong argument that developing compiler optimizations within a proof framework, where safety checks are explicit and machine-checked, has tangible benefits for compiler users.”
Calculus of Inductive Constructions is quite powerful: automatic proof generation is quite limited

Instead, user provides hints in the form of proof scripts

Proof scripts:
lists of tactics, which guide Coq in generating the proof

Key Steps

- Introduce definitions and theorems
- Prove them by applying deductive steps called tactics

- Coq Tactics Quick Reference

- Tactics Index
 https://coq.inria.fr/refman/tactic-index.html
Theorem: For all \(n \), \(2 \sum_{0 \leq i \leq n} i = n(n + 1) \)

Proof: By induction on \(n \).

Base case: \((n = 0)\):

\[
2 \sum_{0 \leq i \leq n} i = 0 = 0(0 + 1)
\]

Inductive case: \((n = n' + 1)\):

IH: \(2 \sum_{0 \leq i \leq n'} i = n'(n' + 1) \)

\[
2 \sum_{0 \leq i \leq n} i = 2(n' + 1) + 2 \sum_{0 \leq i \leq n'} i
\]

\[
= 2(n' + 1) + n'(n' + 1)
\]

\[
= (n' + 1)(n' + 2)
\]
Proof: In Coq

Require Import Arith ArithRing.

Fixpoint sum (n : nat) : nat :=
match n with
| O => O
| S n => S n + sum n
end.

Theorem sum_equals : forall n, 2 * sum n = n * (n + 1).
 induction n.
 trivial.
 cbv [sum].
 rewrite mult_plus_distr_l.
 fold sum.
 rewrite IHn.
 ring.
Qed.

Just a familiar ADT and Recursive Function Definition

Sequence of tactics
Proof: In Coq

Proof Script

Require Import Arith ArithRing.

Fixpoint sum (n : nat) : nat :=
 match n with
 | 0 => 0
 | S n => S n + sum n
end.

Theorem sum_equal : forall n, 2 * sum n = n * (n + 1).
 induction n.
 Some_unknown_tactic.

Current Goal

2 subgoals, subgoal 1 (ID 9)

2 * sum 0 = 0 * (0 + 1)

Error Reporting

subgoal 2 (ID 12) is:
2 * sum (S n) = S n * (S n + 1)

Error: The reference some_unknown_tactic was not found in the current environment.
• Basic syntax to introduce lemmas and theorems

Lemma O_plus : forall n, plus O n = n.
Proof.
 (* Sequence of tactics *)
Qed.

• Lemma and Theorem are interchangeable
 (You can also say Remark, Corollary, Fact or Proposition)
Tactics

- Tactics instruct Coq on the steps to take to prove a theorem

Reflexivity

- Prove an equality goal that follows by normalizing terms

Induction x

- Prove goal by induction on quantified variable x
- Structural Induction: x is any recursively defined
- All variables appearing before x will remain fixed throughout the induction
Tactics

simpl
- Apply standard heuristics for computational simplification in conclusion
- Often involves doing some β-reductions

rewrite H
- Use (potentially quantified) equality H to rewrite in the conclusion

intros
- Move quantified variables and/or hypotheses above the double line

apply thm
- Apply a named theorem, reducing the goal into one new subgoal for each of the theorem’s hypotheses, if any
Tactics

assumption

• Prove a conclusion that matches a known hypothesis

destruct E

• Do case analysis on the constructor used to build term E
Next Session

Bring a laptop that has Coq and Proof General already installed (if you have access to a laptop)