Recap

Kripke structure M

LTL formula ϕ

Büchi Automaton $A_{\neg \phi}$ for $\neg \phi$

$L(M \times A_{\neg \phi}) \equiv \emptyset$

yes

no + counterexample
Complexity

- Time and space complexity of Model checking for Kripke structure M and property ϕ

$$O\left(|M| \times 2^{\phi}\right)$$

- Main disadvantage of model checking: state explosion problem. Number of states rapidly exceeds computational limits for complex systems.

- Approaches to reduce the size of state space:
 - ϕ: not really needed, ϕ is usually small
 - M: partial-order reduction, abstraction
Intuition

- Concurrent software is usually asynchronous: most of the activities by different processes are independent.
- Arbitrary ordering of concurrent events: n transitions generate $n!$ orderings and 2^n states.
 - Exponential “explosion” of resulting state space.
- Partial order reduction exploits the independence of concurrent events: it only explores relevant portions of the state space.
Motivating Example 1

Full asynchronous interleaving of process actions is sometimes redundant

Final result is the same, no matter which path is followed
Motivating Example 2

six runs:

- $x = 1; g = g + 2; y = 1; g = g \times 2$
- $x = 1; y = 1; g = g + 2; g = g \times 2$
- $x = 1; y = 1; g = g \times 2; g = g + 2$
- $y = 1; g = g \times 2; x = 1; g = g + 2$
- $y = 1; x = 1; g = g \times 2; g = g + 2$
- $y = 1; x = 1; g = g + 2; g = g \times 2$

Two interleavings of $x = 1$ and $y = 1$ lead to the same result.

Two possible interleavings of $g = g + 2$ and $g = g \times 2$ both lead to different values of g.
Dependencies

- Assume x and y are local variables, g is a global variable

Dependent

- $g = g \times 2$ and $g = g + 2$ because they share same data
- $x = 1$ and $g = g + 2$ because they are both part of first process
- $y = 1$ and $g = g \times 2$ because they are both part of second process

Independent

- $x = 1$ and $y = 1$
- $x = 1$ and $g = g \times 2$
- $y = 1$ and $g = g + 2$
The three runs differ only in the relative order of execution of independent operations.
Partial order Reduction Idea

- Partition execution runs into equivalent classes
- Group runs for which the order of independent actions does not matter
 - Hence partial order reduction
- Check only one run (i.e. the representative) in each equivalent class
- Model checking using partial order reduction is also/better called “model checking using representatives”
Necessary Runs

- After eliminating all independences, two runs are left
- Note that three states (of the full state space) are not visited.
• LTL properties $G(g = 0 \lor g > x), \; F(g \geq 2), \; (g = 0) \; U \; (x = 1)$
• All these properties hold in the full graph and the reduced graph
• (i.e. considering only two necessary runs)
Necessary Runs

What about $G(x \geq y)$?

This property holds in the reduced graph, but not in the full graph.
Visibility

- Visibility of the variables x and y in $G(x \geq y)$ introduces dependencies that were not assumed to exist.
- Dependencies do not only arise from data but also from properties to be checked.
- **Solution.** Remove $x = 1$ and $y = 1$ from the independences.

\[
\begin{array}{cccc}
\text{Visibility} & x = 1 & y = 1 & g = g + 2 \\
\hline
x = 1 & - & \text{D(prop)} & \text{D(control)} \\
y = 1 & \text{D(prop)} & - & \text{D(control)} \\
g = g + 2 & \text{D(control)} & \text{indep} & \text{D(data)} \\
g = g \times 2 & \text{indep} & \text{D(control)} & - \\
\end{array}
\]
Questions

- Given a set of processes how can we automatically identify classes of equivalent runs?
- How to avoid full construction upfront, but deciding on-the-fly which states and transitions are necessary
Implementing Partial Order Reduction

- At each state s, some set of actions is enabled: $\text{enabled}(s)$
- Of this set, a subset are such that any interleaving of them yields the same end state and they do not “influence” other actions: $\text{ample}(s)$
- Pick one order for elements of $\text{ample}(s)$ and execute all those actions first in that order
- How to compute $\text{ample}(s)$?
Important characteristics of elements a, b of ample(s): must be independent & invisible

- Action a should not disable b, and vice-versa
- The effect of ample(s) actions should not affect the values of any “relevant” atomic propositions in the LTL property

Conservative heuristics to compute ample(s)

- If the same variable appears in two actions, they are dependent
- If two actions appear in the same process/module, they are dependent
- If an action shares a variable with a relevant atomic proposition, then it is visible