Lecture 32
Temporal Logic
Instructor: Hossein Hojjat

November 17, 2017
Temporal Logic

\(G \ p \) is true for a computation path if \(p \) holds at all states (points of time)

\[\begin{array}{c}
0 & 1 & 2 & 3 & 4 & \cdots \\
\bullet & \bullet & \bullet & \bullet & \bullet & \cdots
\end{array} \]

\(F \ p \) is true for a computation path if \(p \) holds at some state along that path

\[\begin{array}{c}
0 & 1 & 2 & \cdots & \cdots & \cdots \\
\circ & \circ & \circ & \bullet & \bullet & \cdots
\end{array} \]

\(X \ p \) is true along a path starting in state \(s_i \) if \(p \) holds in the next state \(s_{i+1} \)

\[\begin{array}{c}
0 & 1 & 2 & 3 & 4 & \cdots \\
\circ & \circ & \circ & \bullet & \circ & \cdots
\end{array} \]

\(p \ U \ q \) is true along a path starting at \(s \)

\[\begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & \cdots \\
\bullet & \bullet & \bullet & \bullet & \circ & \circ & \cdots
\end{array} \]

\(p = \bullet, \ q = \bullet, \) arbitrary = \(\circ \)
Example

What do they mean?

- $G F p$
- $F G p$
- $G(p \rightarrow F q)$
- $F(p \rightarrow (X X q))$
Example

What do they mean?

- **G F p**

 p holds infinitely often

- **F G p**

- **G(p → F q)**

- **F(p → (X X q))**
What do they mean?

- $G F p$
 - p holds infinitely often

- $F G p$
 - Eventually, p holds henceforth

- $G(p \to F q)$

- $F(p \to (X X q))$
Example

What do they mean?

- \textbf{G F } p

 \(p \) holds infinitely often

- \textbf{F G } p

 Eventually, \(p \) holds henceforth

- \textbf{G(p \rightarrow F q)}

 Every \(p \) is eventually followed by a \(q \)

- \textbf{F(p \rightarrow (X X q))}
Example

What do they mean?

- **G F p**

 \(p\) holds infinitely often

- **F G p**

 Eventually, \(p\) holds henceforth

- **G(p → F q)**

 Every \(p\) is eventually followed by a \(q\)

- **F(p → (X X q))**

 Every \(p\) is followed by a \(q\) two steps later
G, F, X, U: All express properties along system traces

- Can you express Gp purely in terms of F, p, and Boolean operators?

- How about F in terms of U?

- What about X in terms of G, F, or U?
Temporal Operators & Relationships

G, F, X, U: All express properties along system traces

- Can you express $G \ p$ purely in terms of $F, \ p$, and Boolean operators?

 \[G \ p = \neg F \ \neg p \]

- How about F in terms of U?

- What about X in terms of G, F, or U?
G, F, X, U: All express properties along system traces

- Can you express $G \ p$ purely in terms of F, p, and Boolean operators?

 \[
 G \ p = \neg F \ \neg p
 \]

- How about F in terms of U?

 \[
 F \ p = \text{true} \ U \ p
 \]

- What about X in terms of G, F, or U?
G, F, X, U: All express properties along system traces

- Can you express $G\ p$ purely in terms of F, p, and Boolean operators?
 \[G\ p = \neg F\ \neg p \]

- How about F in terms of U?
 \[F\ p = \text{true} U\ p \]

- What about X in terms of G, F, or U?
 Cannot be done
Exercise

Write a temporal logic formula for each of the given properties

- inv is true for all states

- In all states it is not the case that $read$ and $write$

- At every state a $request$ implies that there exists a future point where $grant$ holds

- At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point

- In all states, there is a future position where $enabled$ holds

- There is a future position, from which all future positions have $enabled$ holding
Exercise

Write a temporal logic formula for each of the given properties

- inv is true for all states
 \[G \ inv \]

- In all states it is not the case that $read$ and $write$
 \[G \neg (read \land write) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds
 \[G (request \rightarrow \exists F grant) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point
 \[G (request \rightarrow (request U grant)) \]

- In all states, there is a future position where $enabled$ holds
 \[G F enabled \]

- There is a future position, from which all future positions have $enabled$ holding
 \[F G enabled \]
Exercise

Write a temporal logic formula for each of the given properties

• inv is true for all states

\[G \ inv \]

• In all states it is not the case that $read$ and $write$

\[G \ \neg (read \land write) \]

• At every state a $request$ implies that there exists a future point where $grant$ holds

• At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point

• In all states, there is a future position where $enabled$ holds

• There is a future position, from which all future positions have $enabled$ holding
Exercise

Write a temporal logic formula for each of the given properties

- inv is true for all states
 \[G \ inv \]

- In all states it is not the case that $read$ and $write$
 \[G \neg (read \land write) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds
 \[G(request \rightarrow F\ grant) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point

- In all states, there is a future position where $enabled$ holds

- There is a future position, from which all future positions have $enabled$ holding
Exercise

Write a temporal logic formula for each of the given properties

- \(\text{inv} \) is true for all states
 \[G \text{ inv} \]
- In all states it is not the case that \(\text{read} \) and \(\text{write} \)
 \[G \neg(\text{read} \land \text{write}) \]
- At every state a \(\text{request} \) implies that there exists a future point where \(\text{grant} \) holds
 \[G(\text{request} \rightarrow F \text{ grant}) \]
- At every state a \(\text{request} \) implies that there exists a future point where \(\text{grant} \) holds, and \(\text{request} \) holds up until that point
 \[G(\text{request} \rightarrow (\text{request} U \text{ grant})) \]
- In all states, there is a future position where \(\text{enabled} \) holds
- There is a future position, from which all future positions have \(\text{enabled} \) holding
Write a temporal logic formula for each of the given properties

- inv is true for all states

 \[G \ inv \]

- In all states it is not the case that $read$ and $write$

 \[G \neg (read \land write) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds

 \[G (request \rightarrow F \ grant) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point

 \[G (request \rightarrow (request \cup grant)) \]

- In all states, there is a future position where $enabled$ holds

 \[G F \ enabled \]

- There is a future position, from which all future positions have $enabled$ holding
Write a temporal logic formula for each of the given properties

- inv is true for all states
 \[G \ inv \]

- In all states it is not the case that $read$ and $write$
 \[G \neg (read \land write) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds
 \[G(request \rightarrow F \ grant) \]

- At every state a $request$ implies that there exists a future point where $grant$ holds, and $request$ holds up until that point
 \[G(request \rightarrow (request \lor grant)) \]

- In all states, there is a future position where $enabled$ holds
 \[G \ F \ enabled \]

- There is a future position, from which all future positions have $enabled$ holding
 \[F \ G \ enabled \]
Two terms you are likely to run into:

Safety
- Something bad will never happen
 \[G \neg \text{bad} \]
- If it fails to hold, it’s easy to produce a witness

Liveness
- Something good will eventually happen
 \[F \text{ good} \]
- What does a witness for this look like?
Temporal Logic Flavors

- What we have seen so far are properties expressed over a single computation path or run
- **Linear** Temporal Logic

Computation Tree Logic

- Properties expressed over a tree of all possible executions

Kripke structure

Infinite Computation Tree
Computation Tree Logic

- Computation Tree Logic (CTL, CTL*)
- Properties expressed over a tree of all possible executions
- CTL* gives more expressiveness than LTL
- CTL is a subset of CTL* that is easier to verify than arbitrary CTL*
Computation Tree Logic (CTL*)

- Introduce two extra path quantifiers A and E
- $A\ p$: for all paths \mathcal{f}
- $E\ p$: for some path \mathcal{f}
- Example:

 “The grant signal must always be asserted some time after the request signal is asserted”

 \[
 AG(req \rightarrow AF\ grant)
 \]

Two important subsets:

- LTL: all formulas of the form $A\ p$
 - Example: $A(FG\ p)$
- CTL: there must be a path quantifier before every linear operator
 - Example: $AG(EF\ p)$
$AX \ p$

For every next state p holds
There exists a next state where p holds
For all paths, there exists a future state where p holds
There exists a path with a future state where p holds

$EF \ p$
For all paths, for all states along them, p holds
There exists a path such that, for all states along it, p holds

$$EG\ p$$
For all paths, \(q \) eventually holds, and \(p \) holds at all states earlier.
$E(p \ U \ q)$

Exists path where q eventually holds, and p holds at all states earlier
• CTL and LTL are not equivalent
• There are properties that can be expressed in LTL but cannot be expressed in CTL
 • For example: $F G p$
• There are properties that can be expressed in CTL but cannot be expressed in LTL
 • For example: $AG(EF p)$
• Hence, expressive power of CTL and LTL are not comparable
Why CTL?

- Verifying LTL properties turns out to be computationally harder than CTL
- But LTL is more intuitive to write
- Complexity of model checking
 - Exponential in the size of the LTL expression
 - Linear for CTL
- For both, model checking is linear in the size of the state graph