Is the following true?

\{x = 0\}
y := x;
x := x + 1;
\{x = 1 \land y = 0\}

YES!
Is the following still true?

\[
\{x = 0\} \\
y := x; \\
x := x + 1; \\
{x = 1 \land y = 0}\]

\[
\parallel \\
x := 5; \\
x := 5; \\
\parallel \\
\]

NO!

The parallel process may interfere with the intermediate assertions.
Is the following still true?

\[
\{x = 0\} \\
y := x; \\
x := x + 1; \\
\{x = 1 \land y = 0\}
\]

• NO!

\[
x := 5;
\]
Is the following still true?

\[
\begin{align*}
\{x = 0\} & \\
y := x; \quad \parallel \quad x := 5; \\
\{x + 1 = 1 \land y = 0\} & \\
x := x + 1; \\
\{x = 1 \land y = 0\} &
\end{align*}
\]

NO!
Is the following still true?

\[
\{x = 0\}
\]
\[
y := x; \quad | \quad x := 5;
\]
\[
\{x + 1 = 1 \land y = 0\}
\]
\[
x := x + 1;
\]
\[
\{x = 1 \land y = 0\}
\]

NO!

The parallel process may interfere with the intermediate assertions.
Parallel Composition

• Extend IMP language of previous lectures with parallel composition

\[
e ::= \ n \ | \ x \ | \ e_1 + e_2 \ | \ e_1 = e_2
\]

\[
c ::= \ x := e \ | \ \text{if } e \ \text{then } c_1 \ \text{else } c_2 \ | \\
\quad \text{while } e \ \text{do } c \ | \ \text{skip} \ | \ c_1 ; c_2 \ | \\
\quad c_1 \parallel c_2
\]
Can we derive a Hoare triple for parallel composition from the triples of each command?

First Attempt:

\[\vdash \{ P_1 \} \ c_1 \ \{ Q_1 \} \quad \vdash \{ P_2 \} \ c_2 \ \{ Q_2 \} \]
\[\vdash \{ P_1 \land P_2 \} \ \parallel \ \{ Q_1 \land Q_2 \} \]

Intuition: if we satisfy the preconditions of \(c_1 \) and \(c_2 \), their postconditions will be satisfied too.
Unsoundness of First Attempt

\[\vdash \{ P_1 \} c_1 \{ Q_1 \} \quad \vdash \{ P_2 \} c_2 \{ Q_2 \} \]
\[\vdash \{ P_1 \land P_2 \} c_1 \parallel c_2 \{ Q_1 \land Q_2 \} \]

- This rule is not always sound, consider:

\(\{ x = 1 \} \ y := 0 \ \{ x = 1 \} \quad \{ \text{true} \} \ x := 10 \ \{ \text{true} \} \)

- It does not hold that

\(\{ x = 1 \land \text{true} \} \ y := 0 \parallel x := 10 \ \{ x = 1 \land \text{true} \} \)
Second Attempt

\[
\begin{align*}
\vdash \{P_1\} c_1 \{Q_1\} & \quad \vdash \{P_2\} c_2 \{Q_2\} \\
\vdash \{P_1 \land P_2\} c_1 \parallel c_2 \{Q_1 \land Q_2\}
\end{align*}
\]

- If \(c_1\) and \(c_2\) do not read and write the same variables, and all the pres- and post- conditions talk about different variables
- What’s wrong with this?
• If \(c_1 \) and \(c_2 \) do not read and write the same variables, and all the pres- and post- conditions talk about different variables

• What’s wrong with this?

• No way to prove some program

• The rule is \textbf{incomplete}
Let $\text{UPD}(c)$ be the set of variables that are updated (modified) in c

$$\vdash \{P_1\} \ c_1 \ \{Q_1\} \quad \vdash \{P_2\} \ c_2 \ \{Q_2\}$$

$$\vdash \{P_1 \land P_2\} \ c_1 \ || \ c_2 \ \{Q_1 \land Q_2\}$$

If $\text{UPD}(c_1) \cap (\text{FV}(P_2) \cup \text{FV}(Q_2)) = \emptyset$ and $\text{UPD}(c_2) \cap (\text{FV}(P_1) \cup \text{FV}(Q_1)) = \emptyset$
Let $\text{UPD}(c)$ be the set of variables that are updated (modified) in c

$\vdash \{P_1\} c_1 \{Q_1\} \quad \vdash \{P_2\} c_2 \{Q_2\}$

$\vdash \{P_1 \land P_2\} c_1 \parallel c_2 \{Q_1 \land Q_2\}$

If $\text{UPD}(c_1) \cap (\text{FV}(P_2) \cup \text{FV}(Q_2)) = \emptyset$ and $\text{UPD}(c_2) \cap (\text{FV}(P_1) \cup \text{FV}(Q_1)) = \emptyset$

Still unsound. Consider:

$\{x = 0\} \ y := x; z := y \ \{z = 0\}$

$\{\text{true}\} \ y := 10 \ \{\text{true}\}$

It does not hold that

$\{x = 0 \land \text{true}\} \ y := x; z := y \parallel y := 10 \ \{z = 0 \land \text{true}\}$

Diagnose: $y := 10$ interferes with the proof of

$\{x = 0\} \ y := x; z := y \ \{z = 0\}$

\uparrow

$y = 0$
Susan Owicki,
“Axiomatic proof techniques for parallel programs”,
Cornell University, Ithaca, NY, 1975
 • Under supervision of Prof. David Gries
• First complete logic for partial correctness of concurrent programs that communicate using shared variables
Interference Freedom

- **Interference Freedom**: every assertion used in the local verification is not invalidated by the execution of the other process.

\[
P_1: \{ p_1 \} \quad c_1 \quad \{ p_2 \} \quad c_2 \quad \ldots
\]

\[
P_2: \{ q_1 \} \quad a_1 \quad \{ q_2 \} \quad a_2 \quad \ldots
\]

We say that they are interference free iff

\[
\forall p_i \in \text{assertions of } P_1 \land \forall a_j \in \text{atomic actions of } P_2, \quad \{ p_i \land \text{pre } a_j \} \\
\quad a_j \\
\quad \{ p_i \} \\
(\text{and vice versa})
\]

- If \(P_1 \) has \(n \) statements and \(P_2 \) has \(m \) statements, proving interference freedom requires proving \(O(n \times m) \) correctness formulas.
These two proof outlines are correct but not interference free.

For example, the assertion $x = 0$ is not preserved against the atomic action $x := x + 2$:

$$
\begin{align*}
\{x = 0\} & \quad \| \quad \{\text{true}\} & \quad \{x = 0 \land x = 0\} \\
 x := x + 2; & \quad \| \quad x := 0; & \quad x := x + 2; \\
\{x = 2\} & \quad \| \quad \{x = 0\} & \quad \{x = 0\}
\end{align*}
$$

By weakening the postconditions we obtain both correct and interference free proof outlines:

$$
\begin{align*}
\{x = 0\} & \quad \| \quad \{\text{true}\} & \quad \{(x = 0 \lor x = 2) \land x = 0\} & \quad \{x = 0\} \\
 x := x + 2; & \quad \| \quad x := 0; & \quad x := x + 2; & \quad \Rightarrow & \quad x := x + 2; \\
\{x = 0 \lor x = 2\} & \quad \| \quad \{x = 0 \lor x = 2\} & \quad \{x = 0 \lor x = 2\} & \quad \Rightarrow & \quad \{x = 0 \lor x = 2\}
\end{align*}
$$
Rule for Parallel Composition

\[\vdash \{ P_1 \} c_1 \{ Q_1 \} \quad \vdash \{ P_2 \} c_2 \{ Q_2 \} \quad \text{interference freedom} \]

\[\vdash \{ P_1 \land P_2 \} c_1 \parallel c_2 \{ Q_1 \land Q_2 \} \]

• This rule is not compositional
• A change in one of the components may affect the proof, not only of the modified component, but also of all the others
- **Rely-Guarantee** is a well-known compositional method for proving Hoare logic properties of concurrent programs.
- Rough idea: instead of trying to write interference-free proofs, explicitly account for the allowed interference.
- No additional interference checks required.
Rely-Guarantee

\[R, G \vdash \{ P \} \ c \ \{ Q \} \]

If

1. program \(c \) is executed in a state which satisfies \(P \)
2. every state change by another process satisfies \(R \)

then

1. every final state of \(c \) satisfies \(G \)
2. if the execution terminates, the final state will satisfy \(Q \)