Big-Step Operational Semantics for λ-calculus

- Configuration is simply a λ-expression: (there is no state)
- Result is a different λ-expression
- Inductive definition: Base case

$$x \Downarrow x$$

- Inductive definition: recursive cases

$$\lambda x.e \Downarrow \lambda x.e$$

Call-by-Name Reduction:

$$e_1 \Downarrow \lambda x.e'_1 \quad e_1'[x \mapsto \alpha(e_2)] \Downarrow e_3$$

$$e_1 \ e_2 \Downarrow e_3$$

Call-by-Value Reduction:

$$e_1 \Downarrow \lambda x.e'_1 \quad e_2 \Downarrow e'_2 \quad e_1'[x \mapsto \alpha(e'_2)] \Downarrow e_3$$

$$e_1 \ e_2 \Downarrow e_3$$
The same techniques apply to programs with state.
The big difference is that the configuration now includes state.

IMP: A Simple Imperative Language

\[e ::= \ n \mid x \mid e_1 \mathrel{=} e_2 \mid \text{true} \mid \text{false} \]

\[c ::= \ x := e \mid c_1 ; c_2 \mid \text{if } e \text{ then } c_1 \text{ else } c_2 \mid \text{while } e \text{ do } c \mid \text{skip} \]

Now we need two types of judgments:
- Expressions result in values
- Commands change the state

\[\langle e, \sigma \rangle \Downarrow n \]
\[\langle c, \sigma \rangle \Downarrow \sigma' \]

State: a function \(\sigma \) from variable names to values.
• Rules for expressions are very similar to what we had before

\[
\langle n, \sigma \rangle \Downarrow n \quad \frac{\langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2 \quad n = n_1 + n_2}{\langle e_1 + e_2, \sigma \rangle \Downarrow n}
\]

• We need a rule to read values from variables

\[
\langle x, \sigma \rangle \Downarrow \sigma(x)
\]
• Commands mutate the state

\[
\frac{\langle e, \sigma \rangle \Downarrow n}{\langle x := e, \sigma \rangle \Downarrow \sigma[x \mapsto n]}
\]

\[
\frac{\langle e_1, \sigma \rangle \Downarrow \text{false} \quad \langle c_f, \sigma \rangle \Downarrow \sigma'}{\langle \text{if } e_1 \text{ then } c_t \text{ else } c_f, \sigma \rangle \Downarrow \sigma'}
\]

\[
\frac{\langle e_1, \sigma \rangle \Downarrow \text{true} \quad \langle c_t, \sigma \rangle \Downarrow \sigma'}{\langle \text{if } e_1 \text{ then } c_t \text{ else } c_f, \sigma \rangle \Downarrow \sigma'}
\]

• What about loops?
• The definition for loops must be recursive

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow \text{false} \\
\langle \text{while } e_1 \text{ do } c, \sigma \rangle & \Downarrow \sigma
\end{align*}
\]

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow \text{true} & \langle c ; \text{while } e_1 \text{ do } c, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]

\[
\begin{align*}
\langle \text{while } e_1 \text{ do } c, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow \text{true} & \langle c, \sigma \rangle & \Downarrow \sigma'' & \langle \text{while } e_1 \text{ do } c, \sigma'' \rangle & \Downarrow \sigma'
\end{align*}
\]

\[
\begin{align*}
\langle \text{while } e_1 \text{ do } c, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]
Big-step Operational Semantics:

- Does not allow us to explicitly observe intermediate execution states
 \[\langle e, \sigma \rangle \downarrow n \] means that in state \(\sigma \), expression \(e \) evaluates to \(n \)
- In one, big step, all the way to a result
 \[\langle c, \sigma \rangle \downarrow \sigma' \] after evaluating command \(c \) in state \(\sigma \) the new state will be \(\sigma' \)
- Hard to talk about commands that do not terminate
- But we do not have an explanation of how \(c \) runs or fails

Small-step Operational Semantics:

- Describes a single step in the evaluation
- Many steps may be needed to get a result
- Contextual semantics is a small-step semantics where the atomic execution step is a rewrite of the program
• We define a relation $\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle$

• c' is obtained from c via an atomic rewrite step

• Evaluation terminates when the program has been rewritten to a terminal program
 • one from which we cannot make further progress

• For IMP the terminal command is `skip`

• As long as the command is not `skip` we can make further progress

• Some commands never reduce to `skip`

 `while true do skip`
A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[\langle x + (8 - 2), \sigma \rangle \rightarrow \langle x + (6), \sigma \rangle \rightarrow \langle 4 + 6, \sigma \rangle \rightarrow \langle 10, \sigma \rangle \]

\[\sigma(x) = 4 \]
• A **redex** is a syntactic expression or command that can be reduced (transformed) in one atomic step

• The first step in defining a small-step semantics is to define the redexes

\[
\begin{align*}
 r & ::= x \\
 & \mid n_1 + n_2 \\
 & \mid n_1 == n_2 \\
 & \mid x := n \\
 & \mid \text{skip;} \ c \\
 & \mid \text{if true then } c_1 \ \text{else } c_2 \\
 & \mid \text{if false then } c_1 \ \text{else } c_2 \\
 & \mid \text{while } b \ \text{do } c
\end{align*}
\]

Note that \((1 + 2) + 3\) is not a redex, but \(1 + 2\) is

• In **\(\lambda\)-calculus** : \((\lambda x. v) \ e_2\) , \((\lambda x. e_1) \ e_2\)
Local Reduction Rules

- One for each redex: \(\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle \)
- Means in state \(\sigma \), the redex \(r \) can be replaced in one step with the expression \(e \)

- \(\langle x, \sigma \rangle \rightarrow \langle \sigma(x), \sigma \rangle \)
- \(\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle \) where \(n = n_1 \) plus \(n_2 \)
- \(\langle n_1 == n_2, \sigma \rangle \rightarrow \langle \text{true}, \sigma \rangle \) if \(n_1 = n_2 \)
- \(\langle x := n, \sigma \rangle \rightarrow \langle \text{skip}, \sigma[x := n] \rangle \)
- \(\langle \text{skip} ; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle \)
- \(\langle \text{if true then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle \)
- \(\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle \)
- \(\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \langle \text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else } \text{skip}, \sigma \rangle \)
The Global Reduction Rule

General idea of contextual semantics

- **Decompose** the current expression into the redex-to-reduce-next and the remaining program
 - The remaining program is called a context
- Reduce the redex r to some other expression e
- The resulting (reduced) expression consists of e with the original context
• Step 1: Find The Redex
- Step 1: Find The Redex
- Step 2: Reduce The Redex
Step 1: Find The Redex
Step 2: Reduce The Redex
Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

- We use H to range over contexts
- We write $H[r]$ for the expression obtained by placing redex r in context H
- Now we can define a small-step

\[
\text{If } \langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle \text{ then } \langle H[r], \sigma \rangle \rightarrow \langle H[e], \sigma' \rangle
\]
A context is like an expression (or command) with a hole \circ in the place where the redex goes.

Examples:

- To evaluate $(1 + 3) + 2$ we use the redex $1 + 3$ and the context $\circ + 2$
- To evaluate $\text{if } x > 2 \text{ then } c_1 \text{ else } c_2$ we use the redex x and the context $\text{if } \circ > 2 \text{ then } c_1 \text{ else } c_2$
Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Context</th>
<th>Redex</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨x := (x + 1) + 2, [x = 2]⟩</td>
<td>x = (ο + 1) + 2</td>
<td>x</td>
</tr>
<tr>
<td>⟨x := (2 + 1) + 2, [x = 2]⟩</td>
<td>x = ο + 2</td>
<td>2 + 1</td>
</tr>
<tr>
<td>⟨x := 3 + 2, [x = 2]⟩</td>
<td>x = ο</td>
<td>3 + 2</td>
</tr>
<tr>
<td>⟨x := 5, [x = 2]⟩</td>
<td>ο</td>
<td></td>
</tr>
<tr>
<td>⟨skip, [x = 5]⟩</td>
<td></td>
<td>x := 5</td>
</tr>
</tbody>
</table>
More On Contexts

- Contexts are defined by a grammar

\[
H ::= \circ | n + H | H + e | x := H \\
| \text{if } H \text{ then } c_1 \text{ else } c_2 | H; c
\]

- The grammar defines the evaluation order
- Note in \(a + b \), \(a \) is evaluated before \(b \)
- We can define redexes and contexts to
 - define the order of evaluation
 - define short circuit behavior
More On Contexts

- How do we know if our contexts and redexes are well-defined?

Decomposition theorem:

- If \(c \) is not \(\text{skip} \), then there exist unique \(H \) and \(r \) such that \(c = H[r] \)
- Exist guarantees progress
- Unique guarantees determinism