Motivating Example

- Is \((\lambda f : \text{Int} \to \text{Int}. f \, 3)(\lambda x : \text{Int}. x + 5)\) well-typed in \(F_1\)?

\[
\begin{array}{c}
\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} & \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. e) : \tau_1 \to \tau_2} & \frac{\Gamma \vdash e_1 : \tau' \to \tau \quad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1 \ e_2 : \tau} \\
\end{array}
\]

\[
\begin{array}{c}
\frac{\Gamma \vdash n : \text{Int}}{\Gamma \vdash n : \text{Int}} & \frac{\Gamma \vdash e_1 : \text{Int} \quad \Gamma \vdash e_2 : \text{Int}}{\Gamma \vdash e_1 + e_2 : \text{Int}} \\
\end{array}
\]
Motivating Example

• Is \((\lambda f : \text{Int} \rightarrow \text{Int}. \ f \ 3)(\lambda x : \text{Int}. \ x + 5)\) well-typed in \(F_1\)?

• We did not need to look at the type labels to determine well-typedness
 – We could have figured the actual types without the labels
 – We could have written the derivation without the labels

\[
\begin{array}{c}
 \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \\
 \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. \ e) : \tau_1 \rightarrow \tau_2} \\
 \frac{\Gamma \vdash e_1 : \tau' \rightarrow \tau \quad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1 \ e_2 : \tau} \\
 \frac{\Gamma \vdash e_1 : \text{Int} \quad \Gamma \vdash e_2 : \text{Int}}{\Gamma \vdash e_1 + e_2 : \text{Int}}
\end{array}
\]
• Consider the simply-typed \(\lambda \)-calculus with integers

\[
e ::= x \mid \lambda x : \tau. \ e \mid e_1 \ e_2 \mid n \mid e_1 + e_2
\]

\[
\tau ::= \text{Int} \mid \tau_1 \rightarrow \tau_2
\]

Type inference

• Given a bare term (with no type annotations), can we reconstruct a valid typing for it, or show that it has no valid typing?
• **Problem:** Consider the typing rule for function abstraction

\[
\Gamma, x : \tau \vdash e : \tau' \\
\Gamma \vdash (\lambda x : \tau. e) : \tau \rightarrow \tau'
\]

• Without type annotations, where do we get \(\tau\)?
• Use type variables to stand for as-yet-unknown types

\[
\tau ::= \alpha \mid \text{Int} \mid \tau \rightarrow \tau
\]

• Generate equality constraints \(\tau = \tau\) among the types and type variables
• Solve the constraints to compute a typing
Type Inference Rules

\[\Gamma \vdash n : \text{Int} \]

\[\Gamma, x : \alpha \vdash e : \tau' \quad \alpha \text{ fresh} \]
\[\Gamma \vdash \lambda x.e : \alpha \rightarrow \tau' \]

\[x : \tau \in \Gamma \]
\[\Gamma \vdash x : \tau \]

\[\Gamma \vdash e_1 : \tau_1 \]
\[\Gamma \vdash e_2 : \tau_2 \]
\[\tau_1 = \tau_2 \rightarrow \alpha \quad \alpha \text{ fresh} \]
\[\Gamma \vdash e_1 \ e_2 : \alpha \]

Generated Constraint

\[\tau_1 = \text{Int} \land \tau_2 = \text{Int} \]

\[\Gamma \vdash e_1 + e_2 : \text{Int} \]
Example

\[
\Gamma, x : \alpha_2 \vdash x : \alpha_2 \quad \Gamma, x : \alpha_2 \vdash 1 : \text{Int} \quad \alpha_2 = \text{Int}
\]

\[
\Gamma, x : \alpha_2 \vdash x + 1 : \text{Int} \\
\Gamma \vdash (\lambda x . x + 1) : \alpha_2 \rightarrow \text{Int} \\
\Gamma \vdash 2 : \text{Int} \quad \alpha_2 \rightarrow \text{Int} = \text{Int} \rightarrow \alpha_1
\]

\[
\Gamma \vdash (\lambda x . x + 1) \ 2 : \alpha_1
\]

- We collect all constraints appearing in the derivation into some set \(C \) to be solved.
- Here, \(C \) contains \(\alpha_2 \rightarrow \text{Int} = \text{Int} \rightarrow \alpha_1 \) and \(\alpha_2 = \text{Int} \).
- Solution: \(\alpha_1 = \text{Int} = \alpha_2 \).
- Thus this program is typeable:
 we can derive a typing by replacing \(\alpha_1 \) and \(\alpha_2 \) by Int in the proof.
Solving Equality Constraints

We can solve the equality constraints using the following rewrite rules

- \(C \cup \{ \text{Int} = \text{Int} \} \Rightarrow C \)
- \(C \cup \{ \alpha = \tau \} \Rightarrow C[\alpha \mapsto \tau] \) provided \(\alpha \not\in \text{FV}(\tau) \)
- \(C \cup \{ \tau = \alpha \} \Rightarrow C[\alpha \mapsto \tau] \) provided \(\alpha \not\in \text{FV}(\tau) \)
- \(C \cup \{ \alpha_1 \rightarrow \alpha_2 = \alpha'_1 \rightarrow \alpha'_2 \} \Rightarrow C \cup \{ \alpha_1 = \alpha'_1 \} \cup \{ \alpha_2 = \alpha'_2 \} \)
- \(C \cup \{ \text{Int} = \alpha_1 \rightarrow \alpha_2 \} \Rightarrow \text{unsatisfiable} \)
- \(C \cup \{ \alpha_1 \rightarrow \alpha_2 = \text{Int} \} \Rightarrow \text{unsatisfiable} \)

The condition \(\alpha \not\in \text{FV}(\tau) \) prevents inferring recursive types.
Termination

• We can prove that the constraint solving algorithm terminates
• For each rewriting rule, we either
 – Reduce the size of the constraint set
 – Reduce the number of “arrow” constructors in the constraint set
• As a result, the constraint always gets “smaller” and eventually becomes empty
• A similar argument is made for strong normalization in the simply-typed lambda calculus
Exercise

• Is \((\lambda f. f \ 3)(\lambda x. x + 5)\) well-typed in \(F_1\)?

\[
\begin{array}{c}
\Gamma \vdash n : \text{Int} \\
\Gamma, x : \alpha \vdash e : \tau' \quad \alpha \text{ fresh} \\
\Gamma \vdash \lambda x. e : \alpha \rightarrow \tau' \\
\Gamma \vdash e_1 : \tau_1 \\
\Gamma \vdash e_2 : \tau_2 \\
\tau_1 = \text{Int} \land \tau_2 = \text{Int} \\
\Gamma \vdash e_1 + e_2 : \text{Int}
\end{array}
\]
Polymorphism
Motivating Example

• A type system restricts the class of programs that are considered “legal”

• An expression in the untyped λ-calculus may be reducible to a value but may not be typeable in a particular type system

\[
\text{let } id = \lambda x.x \text{ in }
\]

\[
\left(\cdots (id \text{ true}) \cdots (id \text{ 1}) \cdots \right)
\]

• This expression is not typeable in the simple type system we have discussed so far
Observation: \(\lambda x.x \) returns its argument exactly and places no constraints on the type of \(x \)

The identity function works for any argument type

We can express this with universal quantification:

\[
\lambda x.x : \forall \alpha. \, \alpha \rightarrow \alpha
\]

For any type \(\alpha \), the identity function has type \(\alpha \rightarrow \alpha \)

This is also known as parametric polymorphism
Polymorphism

You have seen this before

```java
public interface List<E>{
    void add(E x);
    E get();
}
...

List<String> ls = ...
ls.add("Hello");
String hello = ls.get(0);
```

How do we formalize this concept?
Let’s extend our system as follows:

\[
\tau ::= \alpha \mid \text{Int} \mid \tau \to \tau \mid \forall \alpha.\tau
\]

\[
e ::= n \mid x \mid \lambda x : \tau . e \mid e\ e \mid \Lambda \alpha . e \mid e[\tau]
\]

- We add polymorphic types, add explicit type abstraction (generalization)
- Annotated code locations at which a value of polymorphic type is created
- We add type application (instantiation)
• Polymorphic functions map types to terms
• Normal functions map terms to terms
• Examples:
 • \(\Lambda \alpha. \lambda x : \alpha.x : \forall \alpha.\alpha \rightarrow \alpha \)
 • \(\Lambda \alpha. \Lambda \beta. \lambda x : \alpha.\lambda y : \beta.x : \forall \alpha.\forall \beta.\alpha \rightarrow \beta \rightarrow \alpha \)
 • \(\Lambda \alpha. \Lambda \beta. \lambda x : \alpha.\lambda y : \beta.y : \forall \alpha.\forall \beta.\alpha \rightarrow \beta \rightarrow \beta \)
• When we use a parametric polymorphic type, we apply (or instantiate) it with a particular type
• In System F this is done by hand:
 • \((\Lambda \alpha. \lambda x : \alpha . x)[\tau_1] : \tau_1 \to \tau_1\)
 • \((\Lambda \alpha. \lambda x : \alpha . x)[\tau_2] : \tau_2 \to \tau_2\)
• This is where the term parametric comes from
• The type \(\forall \alpha . \alpha \to \alpha\) is a “function” in the domain of types, and it is passed a parameter at instantiation time
Type Abstraction (Generalization)

\[
\begin{align*}
\Gamma, \alpha \vdash e &: \tau \\
\Gamma \vdash \Lambda \alpha . e &: \forall \alpha . \tau
\end{align*}
\]

Type Application (Instantiation)

\[
\begin{align*}
\Gamma \vdash e &: \forall \alpha . \tau \\
\Gamma \vdash e[\tau'] &: \tau[\alpha \mapsto \tau']
\end{align*}
\]
Free Variables of a Type

- Need to perform substitutions on quantified types
- Just like λ-calculus, we need to worry about free variables and capture-free substitution
- Define the free variables of a type
 - $FV(\alpha) = \{\alpha\}$
 - $FV(c) = \emptyset$
 - $FV(\tau \rightarrow \tau') = FV(\tau) \cup FV(\tau')$
 - $FV(\forall \alpha.\tau) = FV(\tau) - \{\alpha\}$
Substitution

Define $\tau[\alpha \rightarrow u]$ as

- $\alpha[\alpha \mapsto u] = u$
- $\beta[\alpha \mapsto u] = \beta$ \hspace{1cm} \text{where } \beta \neq \alpha$
- $(\tau \rightarrow \tau')[\alpha \mapsto u] = \tau[\alpha \mapsto u] \rightarrow \tau'[\alpha \mapsto u]$
- $(\forall \beta. \tau)[\alpha \mapsto u] = \forall \beta.(\tau[\alpha \mapsto u])$ \hspace{1cm} \text{where } \beta \neq \alpha \text{ and } \beta \notin \text{FV}(u)$

Define $e[\alpha \mapsto u]$ as

- $(\lambda x : \tau.e)[\alpha \mapsto u] = \lambda x : \tau[\alpha \mapsto u].e[\alpha \mapsto u]$
- $(\Lambda\beta.e)[\alpha \mapsto u] = \Lambda\beta.e[\alpha \mapsto u]$ \hspace{1cm} \text{where } \beta \neq \alpha \text{ and } \beta \notin \text{FV}(u)$
- $(e_1 \ e_2)[\alpha \mapsto u] = e_1[\alpha \mapsto u] \ e_2[\alpha \mapsto u]$
- $x[\alpha \mapsto u] = x$
- $n[\alpha \mapsto u] = n$
Inference for Polymorphism

- We would like to have the power of System F, and the ease of use of type inference
- Given an untyped λ-calculus expression, can we discover the annotations necessary for typing the term in System F? (if such a typing is possible)
- No: This problem has been shown to be undecidable
- Can we at least perform some type inference for parametric polymorphism?
- Yes! (Hindley and Milner Type System)