vk

CSCI-344
Programming Language Concepts (Section 3)

Lecture 10
Continuations, Scheme Semantics
Instructor: Hossein Hojjat

September 21, 2016

Where we are

Done:

e Functions as first-class citizens

e Higher-order functions for Lists

This session:
e A Taste of Continuation-Passing Style (CPS)
- Yet another advantage of Higher-order functions

e ;Scheme Operational Semantics

e Consider the absolute value function

(define abs (x) (if (< x 0) (» -1 x) x))

e Consider the absolute value function

(define abs (x) (if (< x 0) (» -1 x) Xx))

e To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)
2. Then evaluate the appropriate branch (+ -1 x) or x

e Consider the absolute value function

(define abs (x) (if (< x 0) (» -1 x) Xx))

e To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)
2. Then evaluate the appropriate branch (+ -1 x) or x
e Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

e Consider the absolute value function

(define abs (x) (if (< x 0) (» -1 x) Xx))

e To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)
2. Then evaluate the appropriate branch (+ -1 x) or x
e Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

(define abs (x)
((lambda (y) (if y (» -1 x) x)) (< x 0)))

e (lambda (y) (if y (x -1 x) x)) is the continuation
of (< x 0) in the function abs

e At any point during evaluation, continuation is the part of the
computation that still remains to be done

e A continuation is a function from the result of the subexpression
to the final result of the whole computation

e At any point during evaluation, continuation is the part of the
computation that still remains to be done

e A continuation is a function from the result of the subexpression
to the final result of the whole computation
Example

e Question: What is the continuation of (+ 3 4) in
(+ 1 (+ 2 (+ 3 4)))7?

e At any point during evaluation, continuation is the part of the
computation that still remains to be done

e A continuation is a function from the result of the subexpression
to the final result of the whole computation

Example

e Question: What is the continuation of (+ 3 4) in
(+ 1 (+ 2 (+ 3 4)))7?

e Answer: (lambda (x) (+ 1 (+ 2 x)))

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))
(define add5 (m) (+ 3 (add2 m)))

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))
(define add5 (m) (+ 3 (add2 m)))

e Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))
(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))
(define add5 (m) (+ 3 (add2 m)))

e Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))
(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

e We can pass continuation as an extra parameter to add?2

e Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))
(define add5 (m) (add2 m (lambda (r) (+ 3 xr))))

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))
(define add5 (m) (+ 3 (add2 m)))

e Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))
(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

e We can pass continuation as an extra parameter to add?2

e Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))
(define add5 (m) (add2 m (lambda (r) (+ 3 xr))))

e Function add2 is said to be written in continuation-passing style

Continuation-Passing Style (CPS)

Continuation-passing style
A style of programming where every function is explicitly passed its
continuation (i.e., another function to which it should send its result)

Continuation-Passing Style (CPS)

Continuation-passing style
A style of programming where every function is explicitly passed its
continuation (i.e., another function to which it should send its result)

Original 1ength function:

(define length (xs)
(if (null 7 xs) O
(+ 1 (length (cdr xs)))))

CPS variant of 1ength function:

(define length (xs k)
(if (null? xs) (k 0)
(length (cdr xs) (lambda (x) (k (+ 1 x))))))

Why Continuations?

e Continuation-passing style makes the control structure of the
program explicit
e This can be very useful in a variety of applications

e For example, you can pass several continuations to a function

(define divide (a b success fail)
(if (= b 0)
(fail 0)
(success (/ a b)))

e CPS has similarities to the “goto” statement in some imperative
languages
e We can use continuations to implement backtracking search
e For example, see the SAT solver example in book

pScheme Operational Semantics

Key changes in uScheme compared to Impcore:

e New constructs: let, lambda and application
e New values: cons-cells and functions (closures)
e Impcore uses three environment to bind:

1. functions,

2. global variables,
3. local variables

puScheme uses only a single environment p

e Environments of pScheme get copied, a binding in an environment
never gets mutated

- Environment maps names to mutable locations, not values

Locations

e Why can't we use values instead of locations in an environment?

Locations

e Why can't we use values instead of locations in an environment?

(define f (x)
(lambda () (set x (+ x 1))))
(val g (f 5))

e Evaluation of (f 5) creates a closure
- Closure initially: ((lambda () (set x (+ x 1))), {x~5})

Locations

e Why can't we use values instead of locations in an environment?

(define f (x)
(lambda () (set x (+ x 1))))
(val g (f 5))

e Evaluation of (f 5) creates a closure
- Closure initially: ((lambda () (set x (+ x 1))), {x~5})

e We need to change the environment in closure after each call of g

-> (g)

6

-> (g)

7
e Environment points to the location ¢ of x instead of its value

((lambda () (set x (+ x 1))),{x~{})

New Judgment

New Constructs (Abstract Syntax)

Exp = LET (Namelist, Explist, Exp)
| LAMBDA (Namelist, Exp)
|

APPLY (Exp, Explist)

10

New Judgment

New Constructs (Abstract Syntax)

Exp LET (Namelist, Explist, Exp)

| LAMBDA (Namelist, Exp)
| APPLY (Exp,Explist)

New Evaluation Judgment
{e;p,0) I (v,0")

e p never changes
e p maps a name to a mutable location

e o is the store (content of every location)

10

New Judgment

New Constructs (Abstract Syntax)

Exp LET (Namelist, Explist, Exp)

| LAMBDA (Namelist, Exp)
| APPLY (Exp,Explist)

New Evaluation Judgment
{e;p,0) I (v,0")

e p never changes
e p maps a name to a mutable location

e o is the store (content of every location)

Some intuitions for a compiler (interpreter) writer:

e p models the compiler's symbol table

e o models the contents of registers and memory
10

uScheme Semantics: Variables

e Looking up a variable doesn't change the store

x € dom(p) p(x) € dom(o)
(VAR(z), p,0) I (o (p(2)),0)

11

uScheme Semantics: Assignment

zedom(p) p(x)=C (ep,0) | {v,0")
(SET(z,¢),p,0) I {v,0'{€ > v})

(Assign)

12

uScheme Semantics: Assignment

zedom(p) p(x)=C (ep,0) | {v,0")
(SET(z,¢),p,0) I {v,0'{€ > v})

(Assign)

What changes are captured in ¢'?

What changes are captured in o'{{ ~ v}7

What would happen if we used o instead of ¢’ in the conclusion?

What would happen if we used a fresh £7

Some other £ in the range of p?

12

uScheme Semantics: Lambda Expression

e Wrap the current environment along with the lambda expression in a
closure

1, &y all distinct

(LAMBDA({x1,, @), €), p,0) | ((LAMBDA((z1,,), €),p),0)

(MkClosure)

13

uScheme Semantics: Function Application

(e,p,0) | ((LAMBDA((21, ", 2n), €c), ped, 00)
(61,/7700) | (’01,01>

(en707 Un—l) U (Un50n>
by, Ly ¢ dom(oy,) (and all distinct)

<6C7[)(l{$1 =2 517 vy T En}70'71,{£l = v1,... ,/@" g Un,}) U (”U,O’)

(APPLY (e,e1,€2,...,en),p,0) | {v,0")

(ApplyClosure)

14

uScheme Semantics: Function Application

(e,p,0) | ((LAMBDA((21, ", 2n), €c), ped, 00)
(61,%00) | (’U1,01>

(en707 Un—l) U (Un,0n>
by, Ly ¢ dom(oy,) (and all distinct)

<6C7[)(l{$1 =2 517 vy T £71}7071,{£l = v1,... 3471, g Un,}) U (”U,O’)

(APPLY (e,e1,€2,...,en),p,0) | {v,0")

(ApplyClosure)

e What if we used o instead of o in evaluation of ;7

e What if we used o instead of o in evaluation of arguments?
e What if we used p. instead of p in evaluation of arguments?
e What if we did not require {1, ¢, ¢ dom(c)?

e What is the relationship between p and o7

14

uScheme Semantics: Let Expression

r1, -+, o, all distinct
op=0
(e1,p,00) | (v1,01)

<€n7p7 O—n71> U (Un,0n>
Ly, by ¢ dom(oy,) (and all distinct)

(e,p{x1 = l1,...,xn =y} on{xy Ly, x> L)) | (v, 07)
<LET(<(£1,617 s ,wn,en),e),p7a) U <vaal>

(ApplyClosure)

15

e Scheme: Lambda expressions, Closures, Currying, Algebraic Laws,
Higher-order functions, Continuations
Next Lecture

e New Language, New Concepts!
e “Programming in Standard ML" (Robert Harper) (Chapters 1 - 13)
e PL:BPC Chapter 5

16

