
CSCI-344
Programming Language Concepts (Section 3)

Lecture 10
Continuations, µScheme Semantics

Instructor: Hossein Hojjat

September 21, 2016

Where we are

Done:

• Functions as first-class citizens

• Higher-order functions for Lists

This session:

• A Taste of Continuation-Passing Style (CPS)
- Yet another advantage of Higher-order functions

• µScheme Operational Semantics

1

Continuations

• Consider the absolute value function

(define abs (x) (if (< x 0) (* -1 x) x))

• To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)

2. Then evaluate the appropriate branch (* -1 x) or x

• Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

(define abs (x)

((lambda (y) (if y (* -1 x) x)) (< x 0)))

• (lambda (y) (if y (* -1 x) x)) is the continuation
of (< x 0) in the function abs

2

Continuations

• Consider the absolute value function

(define abs (x) (if (< x 0) (* -1 x) x))

• To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)

2. Then evaluate the appropriate branch (* -1 x) or x

• Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

(define abs (x)

((lambda (y) (if y (* -1 x) x)) (< x 0)))

• (lambda (y) (if y (* -1 x) x)) is the continuation
of (< x 0) in the function abs

2

Continuations

• Consider the absolute value function

(define abs (x) (if (< x 0) (* -1 x) x))

• To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)

2. Then evaluate the appropriate branch (* -1 x) or x

• Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

(define abs (x)

((lambda (y) (if y (* -1 x) x)) (< x 0)))

• (lambda (y) (if y (* -1 x) x)) is the continuation
of (< x 0) in the function abs

2

Continuations

• Consider the absolute value function

(define abs (x) (if (< x 0) (* -1 x) x))

• To evaluate abs for a given value we need:
1. Finish evaluating the condition subexpression (< x 0)

2. Then evaluate the appropriate branch (* -1 x) or x

• Continuation of the subexpression (< x 0) is the rest of
computation that will come after evaluation of subexpression

(define abs (x)

((lambda (y) (if y (* -1 x) x)) (< x 0)))

• (lambda (y) (if y (* -1 x) x)) is the continuation
of (< x 0) in the function abs

2

Continuations

• At any point during evaluation, continuation is the part of the
computation that still remains to be done

• A continuation is a function from the result of the subexpression
to the final result of the whole computation

Example

• Question: What is the continuation of (+ 3 4) in
(+ 1 (+ 2 (+ 3 4)))?

• Answer: (lambda (x) (+ 1 (+ 2 x)))

3

Continuations

• At any point during evaluation, continuation is the part of the
computation that still remains to be done

• A continuation is a function from the result of the subexpression
to the final result of the whole computation

Example

• Question: What is the continuation of (+ 3 4) in
(+ 1 (+ 2 (+ 3 4)))?

• Answer: (lambda (x) (+ 1 (+ 2 x)))

3

Continuations

• At any point during evaluation, continuation is the part of the
computation that still remains to be done

• A continuation is a function from the result of the subexpression
to the final result of the whole computation

Example

• Question: What is the continuation of (+ 3 4) in
(+ 1 (+ 2 (+ 3 4)))?

• Answer: (lambda (x) (+ 1 (+ 2 x)))

3

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))

(define add5 (m) (+ 3 (add2 m)))

• Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))

(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

• We can pass continuation as an extra parameter to add2

• Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))

(define add5 (m) (add2 m (lambda (r) (+ 3 r))))

• Function add2 is said to be written in continuation-passing style

4

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))

(define add5 (m) (+ 3 (add2 m)))

• Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))

(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

• We can pass continuation as an extra parameter to add2

• Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))

(define add5 (m) (add2 m (lambda (r) (+ 3 r))))

• Function add2 is said to be written in continuation-passing style

4

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))

(define add5 (m) (+ 3 (add2 m)))

• Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))

(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

• We can pass continuation as an extra parameter to add2

• Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))

(define add5 (m) (add2 m (lambda (r) (+ 3 r))))

• Function add2 is said to be written in continuation-passing style

4

Continuation-Passing Style (CPS)

(define add2 (n) (+ n 2))

(define add5 (m) (+ 3 (add2 m)))

• Consider the continuation of the expression (add2 m):

(define add2 (n) (+ n 2))

(define add5 (m) ((lambda (r) (+ 3 r)) (add2 m)))

• We can pass continuation as an extra parameter to add2

• Delegates the responsibility of calling continuation to function itself

(define add2 (n k) (k (+ n 2)))

(define add5 (m) (add2 m (lambda (r) (+ 3 r))))

• Function add2 is said to be written in continuation-passing style

4

Continuation-Passing Style (CPS)

Continuation-passing style
A style of programming where every function is explicitly passed its
continuation (i.e., another function to which it should send its result)

Original length function:

(define length (xs)
(if (null ? xs) 0

(+ 1 (length (cdr xs)))))

CPS variant of length function:

(define length (xs k)
(if (null? xs) (k 0)

(length (cdr xs) (lambda (x) (k (+ 1 x))))))

5

Continuation-Passing Style (CPS)

Continuation-passing style
A style of programming where every function is explicitly passed its
continuation (i.e., another function to which it should send its result)

Original length function:

(define length (xs)
(if (null ? xs) 0

(+ 1 (length (cdr xs)))))

CPS variant of length function:

(define length (xs k)
(if (null? xs) (k 0)

(length (cdr xs) (lambda (x) (k (+ 1 x))))))

5

Why Continuations?

• Continuation-passing style makes the control structure of the
program explicit

• This can be very useful in a variety of applications
• For example, you can pass several continuations to a function

(define divide (a b success fail)
(if (= b 0)

(fail 0)
(success (/ a b)))

)

• CPS has similarities to the “goto” statement in some imperative
languages

• We can use continuations to implement backtracking search
• For example, see the SAT solver example in book

6

µScheme Operational Semantics

7

What’s New

Key changes in uScheme compared to Impcore:

• New constructs: let, lambda and application

• New values: cons-cells and functions (closures)

• Impcore uses three environment to bind:
1. functions,
2. global variables,
3. local variables

µScheme uses only a single environment ρ

• Environments of µScheme get copied, a binding in an environment
never gets mutated

- Environment maps names to mutable locations, not values

8

Locations

• Why can’t we use values instead of locations in an environment?

(define f (x)

(lambda () (set x (+ x 1))))

(val g (f 5))

• Evaluation of (f 5) creates a closure
- Closure initially: L (lambda () (set x (+ x 1))), {x ↦ 5} M

• We need to change the environment in closure after each call of g

−> (g)
6
−> (g)
7

• Environment points to the location ` of x instead of its value
L (lambda () (set x (+ x 1))), {x ↦ ` } M

9

Locations

• Why can’t we use values instead of locations in an environment?

(define f (x)

(lambda () (set x (+ x 1))))

(val g (f 5))

• Evaluation of (f 5) creates a closure
- Closure initially: L (lambda () (set x (+ x 1))), {x ↦ 5} M

• We need to change the environment in closure after each call of g

−> (g)
6
−> (g)
7

• Environment points to the location ` of x instead of its value
L (lambda () (set x (+ x 1))), {x ↦ ` } M

9

Locations

• Why can’t we use values instead of locations in an environment?

(define f (x)

(lambda () (set x (+ x 1))))

(val g (f 5))

• Evaluation of (f 5) creates a closure
- Closure initially: L (lambda () (set x (+ x 1))), {x ↦ 5} M

• We need to change the environment in closure after each call of g

−> (g)
6
−> (g)
7

• Environment points to the location ` of x instead of its value
L (lambda () (set x (+ x 1))), {x ↦ ` } M

9

New Judgment

New Constructs (Abstract Syntax)

Exp = LET (Namelist,Explist,Exp)
∣ LAMBDA (Namelist,Exp)
∣ APPLY (Exp,Explist)

New Evaluation Judgment

⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩

• ρ never changes

• ρ maps a name to a mutable location

• σ is the store (content of every location)

Some intuitions for a compiler (interpreter) writer:

• ρ models the compiler’s symbol table
• σ models the contents of registers and memory

10

New Judgment

New Constructs (Abstract Syntax)

Exp = LET (Namelist,Explist,Exp)
∣ LAMBDA (Namelist,Exp)
∣ APPLY (Exp,Explist)

New Evaluation Judgment

⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩

• ρ never changes

• ρ maps a name to a mutable location

• σ is the store (content of every location)

Some intuitions for a compiler (interpreter) writer:

• ρ models the compiler’s symbol table
• σ models the contents of registers and memory

10

New Judgment

New Constructs (Abstract Syntax)

Exp = LET (Namelist,Explist,Exp)
∣ LAMBDA (Namelist,Exp)
∣ APPLY (Exp,Explist)

New Evaluation Judgment

⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩

• ρ never changes

• ρ maps a name to a mutable location

• σ is the store (content of every location)

Some intuitions for a compiler (interpreter) writer:

• ρ models the compiler’s symbol table
• σ models the contents of registers and memory

10

µScheme Semantics: Variables

• Looking up a variable doesn’t change the store

x ∈ dom(ρ) ρ(x) ∈ dom(σ)
⟨VAR(x), ρ, σ⟩ ⇓ ⟨σ(ρ(x)), σ⟩ (Var)

11

µScheme Semantics: Assignment

x ∈ dom(ρ) ρ(x) = ` ⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩
⟨SET(x, e), ρ, σ⟩ ⇓ ⟨v, σ′{`↦ v}⟩ (Assign)

• What changes are captured in σ′?

• What changes are captured in σ′{`↦ v}?
• What would happen if we used σ instead of σ′ in the conclusion?

• What would happen if we used a fresh `?

• Some other ` in the range of ρ?

12

µScheme Semantics: Assignment

x ∈ dom(ρ) ρ(x) = ` ⟨e, ρ, σ⟩ ⇓ ⟨v, σ′⟩
⟨SET(x, e), ρ, σ⟩ ⇓ ⟨v, σ′{`↦ v}⟩ (Assign)

• What changes are captured in σ′?

• What changes are captured in σ′{`↦ v}?
• What would happen if we used σ instead of σ′ in the conclusion?

• What would happen if we used a fresh `?

• Some other ` in the range of ρ?

12

µScheme Semantics: Lambda Expression

• Wrap the current environment along with the lambda expression in a
closure

x1, ⋯ , xn all distinct

⟨LAMBDA(⟨x1,⋯, xn⟩, e), ρ, σ⟩ ⇓ ⟨LLAMBDA(⟨x1,⋯, xn⟩, e), ρM, σ⟩
(MkClosure)

13

µScheme Semantics: Function Application

⟨e, ρ, σ⟩ ⇓ ⟨LLAMBDA(⟨x1,⋯, xn⟩, ec), ρcM, σ0⟩
⟨e1, ρ, σ0⟩ ⇓ ⟨v1, σ1⟩

⋮
⟨en, ρ, σn−1⟩ ⇓ ⟨vn, σn⟩

`1,⋯, `n /∈ dom(σn) (and all distinct)
⟨ec, ρc{x1 ↦ `1, . . . , xn ↦ `n}, σn{`1 ↦ v1, . . . , `n ↦ vn}⟩ ⇓ ⟨v, σ′⟩

⟨APPLY(e, e1, e2, . . . , en), ρ, σ⟩ ⇓ ⟨v, σ′⟩
(ApplyClosure)

• What if we used σ instead of σ0 in evaluation of e1?

• What if we used σ instead of σ0 in evaluation of arguments?

• What if we used ρc instead of ρ in evaluation of arguments?

• What if we did not require `1,⋯, `n /∈ dom(σ)?
• What is the relationship between ρ and σ?

14

µScheme Semantics: Function Application

⟨e, ρ, σ⟩ ⇓ ⟨LLAMBDA(⟨x1,⋯, xn⟩, ec), ρcM, σ0⟩
⟨e1, ρ, σ0⟩ ⇓ ⟨v1, σ1⟩

⋮
⟨en, ρ, σn−1⟩ ⇓ ⟨vn, σn⟩

`1,⋯, `n /∈ dom(σn) (and all distinct)
⟨ec, ρc{x1 ↦ `1, . . . , xn ↦ `n}, σn{`1 ↦ v1, . . . , `n ↦ vn}⟩ ⇓ ⟨v, σ′⟩

⟨APPLY(e, e1, e2, . . . , en), ρ, σ⟩ ⇓ ⟨v, σ′⟩
(ApplyClosure)

• What if we used σ instead of σ0 in evaluation of e1?

• What if we used σ instead of σ0 in evaluation of arguments?

• What if we used ρc instead of ρ in evaluation of arguments?

• What if we did not require `1,⋯, `n /∈ dom(σ)?
• What is the relationship between ρ and σ?

14

µScheme Semantics: Let Expression

x1, ⋯ , xn all distinct
σ0 = σ

⟨e1, ρ, σ0⟩ ⇓ ⟨v1, σ1⟩
⋮

⟨en, ρ, σn−1⟩ ⇓ ⟨vn, σn⟩
`1,⋯, `n /∈ dom(σn) (and all distinct)

⟨e, ρ{x1 ↦ `1, . . . , xn ↦ `n}, σn{x1 ↦ `1, . . . , xn ↦ `n}⟩ ⇓ ⟨v, σ′⟩
⟨LET(⟨x1, e1, . . . , xn, en⟩, e), ρ, σ⟩ ⇓ ⟨v, σ′⟩

(ApplyClosure)

15

Summary

• Scheme: Lambda expressions, Closures, Currying, Algebraic Laws,
Higher-order functions, Continuations

Next Lecture

• New Language, New Concepts!

• “Programming in Standard ML” (Robert Harper) (Chapters 1 - 13)

• PL:BPC Chapter 5

16

