Compiler Phases

Source Code (concrete syntax)
\[\text{if} \ (x == 0) \ x = x + 1; \]

Token Stream
\[\text{if} \ (x == 0) \ x = x + 1; \]

Abstract Syntax Tree (AST)

Attributed AST

Machine Code
16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Lexical Analysis

Syntax Analysis (Parsing)

Semantic Analysis (Name Analysis, Type Analysis, ...)

Error

Code Generation
Syntax Analysis: Example

Source Code (token stream)

```
{ if(b) x = x + y;
  while (x > 5) {
    System.out.println(x);
    x = x - 1;
  }
}
```

Abstract Syntax Tree (AST)

Abstract syntax tree removes extra syntax (e.g. parenthesis)
Analogy: for natural languages recognize whether a sentence is grammatically well-formed

```
This course is easy
```

```
sentence
  ──── noun phrase ──── verb phrase ────
  │    │            │            │
  │    determiner  noun  verb  adjective │
  │    │   This    │ course │ is │ easy │
• Parsing only checks syntax correctness
• Several important inspections are deferred until later phases
  • e.g. semantic analysis is responsible for type checking

Program with correct syntax:

```java
int x = true; // type not agree
int y; // variable not initialized
x = (y < z); // variable not declared
```
Overview of Syntax Analysis

- **Input:** Stream of tokens
- **Output:** Abstract Syntax Tree (AST)

What we need for syntax analysis:

- Expressive description technique: describe the syntax
- Acceptor mechanism: determine if input token stream satisfies the syntax description

For lexical analysis:

- Regular expressions describe tokens
- Finite Automata is acceptor for regular expressions
First problem: how to describe language syntax precisely and conveniently.

Regular expressions can describe tokens expressively.

Regular expressions are:
- easy to implement
- efficient by converting to DFA

Why not use regular expressions (on tokens) to specify programming language syntax?
Limits of REs

- Programming languages are not regular: cannot be described by regular expressions
- Consider nested constructs (blocks, expressions, statements)
- Example: language of balanced parentheses is not regular
  \[
  \text{(()) (()) (()) ((()))(((())())))}
  \text{(() (()) (()) ()(())))
  \]
- Problem: acceptor needs to keep track of number of parentheses seen so far (unbounded counting)
- Automaton has finite memory, cannot count

Question:

Answer: Pumping Lemma (refer to Computer Science Theory course)
Limits of REs

• Programming languages are not regular: cannot be described by regular expressions

• Consider nested constructs (blocks, expressions, statements)

• Example: language of balanced parentheses is not regular
  \[
  () (()) ()()() ((()))((()))
  \]

• Problem: acceptor needs to keep track of number of parentheses seen so far (unbounded counting)

• Automaton has finite memory, cannot count

• Question: How can we show that a language is non-regular?

• Answer: Pumping Lemma (refer to Computer Science Theory course)
We use context-free grammars instead of finite state automata.

A specification of the balanced-parenthesis language using context-free grammar:

\[
S \rightarrow (S) \\
S \rightarrow SS \\
S \rightarrow \epsilon
\]

If a grammar accepts a string, there is a derivation of that string using the rules of the grammar:

\[
S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())()
\]
A context-free grammar is a 4-tuple \( G = (T, N, S, R) \) where

- \( T \): token or \( \epsilon \)
- \( N \): Non-terminal symbols: syntactic variables
- \( S \): Start symbol: special non-terminal
- \( R \): Production rule of the form LHS \( \rightarrow \) RHS
  - LHS: single non-terminal
  - RHS: a string of terminals and non-terminals
• Vertical bar is shorthand for multiple production rules
• We abbreviate

\[
S \rightarrow p \\
S \rightarrow q
\]

• as \( S \rightarrow p \mid q \)
Context-free Grammars

- Production rule specifies how non-terminals can be expanded
- A derivation in $G$ starts from the starting symbol $S$
- Each step replaces a non-terminal with one of its right hand sides
- Language $L(G)$ of a grammar $G$:
  set of all strings of terminals derived from the start symbol
Exercise

Give context-free grammars that generate the following languages under \( \Sigma = \{0, 1\} \)

1. all strings that contain at least three 1s

2. all strings with odd length and the middle symbol 0
Give context-free grammars that generate the following languages under \( \Sigma = \{0, 1\} \)

1. all strings that contain at least three 1s

\[
S \rightarrow X1X1X1X
\]
\[
X \rightarrow 0X \mid 1X \mid \epsilon
\]

2. all strings with odd length and the middle symbol 0
Give context-free grammars that generate the following languages under $\Sigma = \{0, 1\}$

1. all strings that contain at least three 1s

   
   \[ S \rightarrow X1X1X1X \]
   \[ X \rightarrow 0X \mid 1X \mid \epsilon \]

2. all strings with odd length and the middle symbol 0

   
   \[ S \rightarrow 0S0 \mid 0S1 \mid 1S0 \mid 1S1 \mid 0 \]
RE is a subset of CFG

- Inductively build a production rule for each regular expression operator

\[
\begin{align*}
\epsilon & \quad \Rightarrow \quad S \rightarrow \epsilon \\
 a & \quad \Rightarrow \quad S \rightarrow a \\
 R_1 R_2 & \quad \Rightarrow \quad S \rightarrow S_1 S_2 \\
 R_1 | R_2 & \quad \Rightarrow \quad S \rightarrow S_1 | S_2 \\
 R_1^* & \quad \Rightarrow \quad S \rightarrow S_1 S | \epsilon
\end{align*}
\]

where

- \( G_1 \): grammar for \( R_1 \), with start symbol \( S_1 \)
- \( G_2 \): grammar for \( R_2 \), with start symbol \( S_2 \)
Derivation Example

• Grammar:

\[ S \rightarrow E + S \mid E \]
\[ E \rightarrow \text{number} \mid (S) \]

• Derive: \((1 + 2) + 3\)

\[ S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \]
\[ \Rightarrow (1 + S) + S \Rightarrow (1 + E) + S \Rightarrow (1 + 2) + S \]
\[ \Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3 \]
Derivation ⇒ Parse Tree

- Parse Tree: tree representation of derivation
- Leaves of tree are terminals
- Internal nodes: non-terminals
- No information on order of derivation steps

Derivation

\[
S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \\
\Rightarrow (1 + S) + S \Rightarrow (1 + E) + S \Rightarrow (1 + 2) + S \\
\Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3
\]

Another Derivation

\[
S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \\
\Rightarrow (E + E) + S \Rightarrow (E + E) + E \Rightarrow (1 + E) + E \\
\Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3
\]
Consider the grammar $G = (\{a, b\}, \{S, P, Q\}, S, R)$ where $R$ is:

- $S \rightarrow PQ$
- $P \rightarrow a \mid aP$
- $Q \rightarrow \epsilon \mid aQb$

Show a derivation tree for

$aaaabb$

Show at least two derivations that correspond to that tree.
Parse Tree vs. AST

Parse Tree (Concrete Syntax)

Abstract Syntax Tree
Discards nonessential information