CSCI 742 - Compiler Construction

Lecture 8
Introduction to Syntax Analysis
Instructor: Hossein Hojjat

February 2, 2017
Compiler Phases

Source Code (concrete syntax)
\[\text{if } (x == 0) \ x = x + 1; \]

Token Stream
\[\text{if } (x == 0) \ x = x + 1; \]

Abstract Syntax Tree (AST)

Attributed AST

Machine Code
\begin{verbatim}
16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...
\end{verbatim}
Abstract syntax tree removes extra syntax (e.g. parenthesis)
Analogy: for natural languages recognize whether a sentence is grammatically well-formed

```
This course is easy
```

```
sentence
  /  
noun phrase   verb phrase
     /    
  determiner noun verb adjective
     /    /
  This course is easy
```
Syntax Analysis Scope

- Parsing only checks syntax correctness
- Several important inspections are deferred until later phases
 - e.g. semantic analysis is responsible for type checking

Program with correct syntax:

```java
int x = true;       // type not agree
int y;              // variable not initialized
x = (y < z);        // variable not declared
```
Overview of Syntax Analysis

- **Input**: Stream of tokens
- **Output**: Abstract Syntax Tree (AST)

What we need for syntax analysis:

- Expressive description technique: describe the syntax
- Acceptor mechanism: determine if input token stream satisfies the syntax description

For lexical analysis:

- Regular expressions describe tokens
- Finite Automata is acceptor for regular expressions
Specifying Language Syntax

- First problem: how to describe language syntax precisely and conveniently
- Regular expressions can describe tokens expressively
- Regular expressions are
 - easy to implement
 - efficient by converting to DFA
- Why not use regular expressions (on tokens) to specify programming language syntax?
• Programming languages are not regular: cannot be described by regular expressions
• Consider nested constructs (blocks, expressions, statements)
• Example: language of balanced parentheses is not regular
 () (()) ()()() (()())(()(()))
 () (()) (()())
• Problem: acceptor needs to keep track of number of parentheses seen so far (unbounded counting)
• Automaton has finite memory, cannot count

Question:
How can we show that a language is non-regular?
Answer:
Pumping Lemma (refer to Computer Science Theory course)
• Programming languages are not regular: cannot be described by regular expressions
• Consider nested constructs (blocks, expressions, statements)
• Example: language of balanced parentheses is not regular
 () ((())) ()()() ((()))((()))((()))
 (())(()) (())(())
• Problem: acceptor needs to keep track of number of parentheses seen so far (unbounded counting)
• Automaton has finite memory, cannot count

• **Question:** How can we show that a language is non-regular?
• **Answer:** Pumping Lemma (refer to Computer Science Theory course)
• We use context-free grammars instead of finite state automata

• A specification of the balanced-parenthesis language using context-free grammar
 \[S \rightarrow (S') \]
 \[S \rightarrow SS \]
 \[S \rightarrow \epsilon \]

• If a grammar accepts a string, there is a derivation of that string using the rules of the grammar

 \[S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S') \Rightarrow (())() \]
A context-free grammar is a 4-tuple \(G = (T, N, S, R) \) where

- \(T \): token or \(\epsilon \)
- \(N \): Non-terminal symbols: syntactic variables
- \(S \): Start symbol: special non-terminal
- \(R \): Production rule of the form \(\text{LHS} \rightarrow \text{RHS} \)
 - \(\text{LHS} \): single non-terminal
 - \(\text{RHS} \): a string of terminals and non-terminals
• Vertical bar is shorthand for multiple production rules
• We abbreviate

\[
S \rightarrow p \\
S \rightarrow q
\]

• as \(S \rightarrow p \mid q \)
• Production rule specifies how non-terminals can be expanded
• A derivation in G starts from the starting symbol S
• Each step replaces a non-terminal with one of its right hand sides
• Language $L(G)$ of a grammar G:
 set of all strings of terminals derived from the start symbol
Give context-free grammars that generate the following languages under \(\Sigma = \{0, 1\} \)

1. all strings that contain at least three 1s

\[
S \rightarrow X 1 X 1 X 1 X \\
X \rightarrow 0 X | 1 X | \epsilon
\]

2. all strings with odd length and the middle symbol 0

\[
S \rightarrow 0 S 0 | 0 S 1 | 1 S 0 | 1 S 1 | 0 S 1 S 0 | 1 S 0 S 1
\]
Give context-free grammars that generate the following languages under $\Sigma = \{0, 1\}$

1. all strings that contain at least three 1s

$$S \rightarrow X1X1X1X$$
$$X \rightarrow 0X \mid 1X \mid \epsilon$$

2. all strings with odd length and the middle symbol 0
Give context-free grammars that generate the following languages under $\Sigma = \{0, 1\}$

1. all strings that contain at least three 1s

 $$S \rightarrow X1X1X1X$$
 $$X \rightarrow 0X \mid 1X \mid \epsilon$$

2. all strings with odd length and the middle symbol 0

 $$S \rightarrow 0S0 \mid 0S1 \mid 1S0 \mid 1S1 \mid 0$$
RE is a subset of CFG

• Inductively build a production rule for each regular expression operator

<table>
<thead>
<tr>
<th>RE representation</th>
<th>CFG rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>$S \rightarrow \epsilon$</td>
</tr>
<tr>
<td>a</td>
<td>$S \rightarrow a$</td>
</tr>
<tr>
<td>R_1R_2</td>
<td>$S \rightarrow S_1S_2$</td>
</tr>
<tr>
<td>$R_1</td>
<td>R_2$</td>
</tr>
<tr>
<td>R_1*</td>
<td>$S \rightarrow S_1S</td>
</tr>
</tbody>
</table>

where

• G_1: grammar for R_1, with start symbol S_1
• G_2: grammar for R_2, with start symbol S_2
Derivation Example

- Grammar:

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S')
\]

- Derive: \((1 + 2) + 3\)

\[
S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \\
\Rightarrow (1 + S) + S \Rightarrow (1 + E) + S \Rightarrow (1 + 2) + S \\
\Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3
\]
Derivation \Rightarrow Parse Tree

- Parse Tree: tree representation of derivation
- Leaves of tree are terminals
- Internal nodes: non-terminals
- No information on order of derivation steps

Derivation

\[
S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \\
\Rightarrow (1 + S) + S \Rightarrow (1 + E) + S \Rightarrow (1 + 2) + S \\
\Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3
\]

Another Derivation

\[
S \Rightarrow E + S \Rightarrow (S) + S \Rightarrow (E + S) + S \\
\Rightarrow (E + E) + S \Rightarrow (E + E) + E \Rightarrow (1 + E) + E \\
\Rightarrow (1 + 2) + E \Rightarrow (1 + 2) + 3
\]
Example

Consider the grammar \(G = (\{a, b\}, \{S, P, Q\}, S, R) \) where \(R \) is:

\[
S \rightarrow PQ \\
P \rightarrow a \mid aP \\
Q \rightarrow \epsilon \mid aQb
\]

Show a derivation tree for

\(aaaabb \)

Show at least two derivations that correspond to that tree.
Parse Tree vs. AST

Parse Tree (Concrete Syntax)

Abstract Syntax Tree
Discards nonessential information