

CSCI 742 - Compiler Construction

Lecture 7
Building Efficient Lexers
Instructor: Hossein Hojjat

January 31, 2017

Lexer Automatic Construction: Big Picture

Input: Token Spec

• List of regular expressions (RE) in priority order

Output: Lexer

Reads an input stream and breaks it up into tokens according to REs

Algorithm

- Convert REs into non-deterministic finite automata (NFA)
- Convert NFA to DFA
- Convert DFA into transition table

Lexer Automatic Construction: Example

• RE for tokens:

(a|ab)

• NFA:

• DFA:

• Transition Table:

	а	b		
0	1	Error		
1	Error	2		
2	Error	Error		

Lexer Automatic Construction: Example

Token Specification

ab {Action 1} aab {Action 2} a+ {Action 3}

	a	b		
s_0	s_1	Error		
s_1	s_3	s_2		
s_2	Error	Error		
s_3	s_4	s_2		
s_4	s_4	Error		

$$\Sigma = \{a, b\}$$

Example:

Input: aab

$$\bullet \ s_0 \longrightarrow s_1 \longrightarrow s_3 \longrightarrow s_2$$

Kleene's Theorem

Theorem

A language L can be described by regular expression if and only if L is the language accepted by a finite automaton.

Algorithms:

- Regular expression ⇒ Automaton
 - important for lexer construction
- Automaton ⇒ Regular expression
 - interesting method in formal languages theory

RE ⇒ Finite Automaton

• Build the finite automaton inductively, based on the definition of regular expressions

RE ⇒ **Finite Automaton**

Alternation $R_1 \mid R_2$

Concatenation R_1 . R_2

Final States no final anymore

RE ⇒ **Finite Automaton**

Alternation $R\ast$

Exercise

Question

 \bullet Construct an NFA for the regular expression $(ab) \ast \ | \ b \ast$

Exercise

Question

 \bullet Construct an NFA for the regular expression $(ab)*\ |\ b*$

Answer

8

DFA Minimization

- Generated DFAs may have a large number of states
- DFA Minimization: Converts a DFA to another DFA that:
 - recognizes the same language
 - has a minimum number of states
- Increases time/space efficiency

Both DFAs accept: $((a \mid b)b * a)*$

DFA Minimization

- \bullet For every regular language L there exists a unique minimal DFA that recognizes L
 - uniqueness up to renaming of states (isomorphism)
- Minimal DFA can be found mechanically

ullet Remove unreachable states: there is no path from initial state to q_3

$$\Sigma = \{a,b\}$$

 $\bullet\,$ Remove unreachable states: there is no path from initial state to q_3

$$\Sigma = \{a,b\}$$

- ullet Remove unreachable states: there is no path from initial state to q_3
- ullet q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- ullet Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them

- ullet Remove unreachable states: there is no path from initial state to q_3
- ullet q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- ullet Any string reaches q_2 or q_6 is guaranteed to be accepted later
- ullet q_2 and q_6 are **equivalent** states: we can unify them

- ullet Remove unreachable states: there is no path from initial state to q_3
- ullet q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them
- If DFA is in q_1 or q_5 :
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states
- q_1 and q_5 are **equivalent** states: we can unify them

- ullet Remove unreachable states: there is no path from initial state to q_3
- ullet q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them
- If DFA is in q_1 or q_5 :
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states
- q_1 and q_5 are **equivalent** states: we can unify them

Equivalent States

Intuition

- Two states are equivalent if all subsequent behavior from those states is the same
- Equivalent states may be unified without affecting DFA's behavior

Definition

- We say that states p and q are equivalent if for all w: $\hat{\delta}(p,w)$ is an accepting state iff $\hat{\delta}(q,w)$ is an accepting state
- ullet $\hat{\delta}$ is the transition function extended for words

DFA Minimization: Procedure

- Write down all pairs of state as a table
- Every cell in table denotes if corresponding states are equivalent
- Table is initially unmarked
- ullet We mark pair (p_i,p_j) when we discover p_i and p_j are not equivalent

q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	?	?	?	?	?	?
q_1		?	?	?	?	?
q_2			?	?	?	?
q_3				?	?	?
q_4					?	?
q_5						?

DFA Minimization: Procedure

- 1. Start by marking all cells (q_i,q_j) where one of them is final and other is non-final.
- 2. Look for unmarked pairs (q_i,q_j) such that for some $c\in \Sigma$, the pair $(\delta(q_i,c),\delta(q_j,c))$ is marked. Then mark (q_i,q_j) .
- 3. Repeat step 2 until no such unmarked pairs remain.

First mark accepting/non-accepting pairs


```
egin{aligned} (q_1,q_3) & 	ext{is unmarked,} \\ q_1 & \stackrel{b}{	o} q_0, \\ q_3 & \stackrel{b}{	o} q_1, \\ 	ext{and } (q_0,q_1) & 	ext{is marked,} \\ 	ext{so mark } (q_1,q_3) \end{aligned}
```



```
egin{aligned} (q_1,q_3) & 	ext{is unmarked,} \\ q_1 & \stackrel{b}{	o} q_0, \\ q_3 & \stackrel{b}{	o} q_1, \\ 	ext{and } (q_0,q_1) & 	ext{is marked,} \\ 	ext{so mark } (q_1,q_3) \end{aligned}
```



```
(q_2,q_3) is unmarked, q_2 \stackrel{b}{\rightarrow} q_0, q_3 \stackrel{b}{\rightarrow} q_1, and (q_0,q_1) is marked, so mark (q_2,q_3)
```



```
(q_2,q_3) is unmarked, q_2 \stackrel{b}{\rightarrow} q_0, q_3 \stackrel{b}{\rightarrow} q_1, and (q_0,q_1) is marked, so mark (q_2,q_3)
```


There is no way to mark the only unmarked pair (q_1, q_2) Obtain minimized DFA by collapsing q_1 , q_2 to a single state

Exercise

Convert the following DFA to a DFA with $3\ \mathrm{states}$

