CSCI 742 - Compiler Construction

Lecture 7
Building Efficient Lexers
Instructor: Hossein Hojjat

January 31, 2017

Lexer Automatic Construction: Big Picture

Input: Token Spec

e List of regular expressions (RE) in priority order

Output: Lexer

e Reads an input stream and breaks it up into tokens according to REs

Algorithm

e Convert REs into non-deterministic finite automata (NFA)
e Convert NFA to DFA

e Convert DFA into transition table

Lexer Automatic Construction: Example

(alab)

e RE for tokens:

o NFA:

e DFA:

e Transition Table: 3 b
0 1 Error
1 | Error 2

Lexer Automatic Construction: Example

Token Specification NFA DFA

ab {Action 1}
aab {Action 2}
a+ {Action 3}

a b
S0 S1 Error
51 53 5o Example:
so | Error | Error Input: aab

s
53 2 2 ® Sg —» S1 —> 83 — S2
S4 Sy Error
Y ={a,b}

Kleene’'s Theorem

Theorem
A language L can be described by regular expression if and only if L is
the language accepted by a finite automaton.

Algorithms:

e Regular expression = Automaton
e important for lexer construction
e Automaton = Regular expression

e interesting method in formal languages theory

RE = Finite Automaton

e Build the finite automaton inductively, based on the definition of
regular expressions

RE = Finite Automaton

Alternation Ry | Ry

Ry

O~~O
W@Rz

Concatenation Ry Ry
Rl.Rz ﬂ-@’\/\/\/\O\ﬂl\—.D’\/\/\f\©
C}#//e/' Q0
Final States

no final anymore

RE = Finite Automaton

€ R
/ \
2 ot
\
Alternation % e y
pd

\

€ Final States
no final anymore

Exercise

Question

e Construct an NFA for the regular expression (ab) * | bx

Exercise

Question

e Construct an NFA for the regular expression (ab) * | bx

Answer

DFA Minimization

e Generated DFAs may have a large number of states
e DFA Minimization: Converts a DFA to another DFA that:

e recognizes the same language
e has a minimum number of states

e Increases time/space efficiency

DFA 1 DFA 2

a,b

o oo

Both DFAs accept: ((a | b)b*a)x*

DFA Minimization

e For every regular language L there exists a unique minimal DFA that
recognizes L

- uniqueness up to renaming of states (isomorphism)

e Minimal DFA can be found mechanically

10

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

Y ={a,b}

11

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

Y ={a,b}

11

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

e (> , gs are both accepting sinks with self-loop for any character in
e Any string reaches g2 or gg is guaranteed to be accepted later

e (- and gg are equivalent states: we can unify them

Y ={a,b}

11

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

e (> , gs are both accepting sinks with self-loop for any character in
e Any string reaches g2 or gg is guaranteed to be accepted later

e (- and gg are equivalent states: we can unify them

Y ={a,b}

11

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

e (>, gg are both accepting sinks with self-loop for any character in 2

Any string reaches ¢y or g is guaranteed to be accepted later

e (- and gg are equivalent states: we can unify them

If DFA is in ¢1 or ¢5:
- if next character is a, it forever accepts in both states
- if next character is b, it forever rejects in both states

q1 and g5 are equivalent states: we can unify them

¥ ={a,b}

11

DFA Minimization: Example

e Remove unreachable states: there is no path from initial state to ¢3

e (>, gg are both accepting sinks with self-loop for any character in 2

Any string reaches ¢y or g is guaranteed to be accepted later

e (- and gg are equivalent states: we can unify them

If DFA is in ¢1 or ¢5:
- if next character is a, it forever accepts in both states
- if next character is b, it forever rejects in both states

q1 and g5 are equivalent states: we can unify them

11

Equivalent States

Intuition

e Two states are equivalent if all subsequent behavior from those
states is the same

e Equivalent states may be unified without affecting DFA’s behavior

Definition

e We say that states p and ¢ are equivalent if for all w:
0(p,w) is an accepting state iff (g, w) is an accepting state

e § is the transition function extended for words

12

DFA Minimization: Procedure

Write down all pairs of state as a table

Every cell in table denotes if corresponding states are equivalent

Table is initially unmarked

We mark pair (p;, p;) when we discover p; and p; are not equivalent

q0
q1
q2
q3
q4
g5

9 92 493 44 945 96
222?77
(7]]2]7]?
K
177

K

?

13

DFA Minimization: Procedure

1. Start by marking all cells (g;, g;) where one of them is final and
other is non-final.

2. Look for unmarked pairs (g;, g;) such that for some ¢ € X, the pair
(0(gi,c¢),0(gj,c¢)) is marked. Then mark (g;, g;).

3. Repeat step 2 until no such unmarked pairs remain.

14

lllustration of minimization algorithm

First mark accepting/non-accepting pairs

9 ¢ g2 43
Qo V| v |V

q1
q2

15

lllustration of minimization algorithm

(q1,q3) is unmarked,

a1 2 qo,

q3 i> q1,

and (qo, ¢q1) is marked,
so mark (q1,¢gs3)

g @1 42 Qg3
qo vV IV |V

q1
q2

15

lllustration of minimization algorithm

(q1,q3) is unmarked,

a1 2 qo,

q3 i> q1,

and (qo, ¢q1) is marked,
so mark (q1,¢gs3)

qo
q1
q2

q0

q1 42 g3
VIV V
v

15

lllustration of minimization algorithm

(g2, q3) is unmarked,

a2 2 qo,

q3 i> q1,

and (qo, ¢q1) is marked,
so mark (go, gs3)

qo
q1
q2

q0

q1 42 g3
VIV V
v

15

lllustration of minimization algorithm

(g2, q3) is unmarked,

b
q2 —b> q0,
q3 — q1,
and (qo, ¢q1) is marked,

so mark (go, gs3)

9 91 Q92 g3
qo VIV V
T v
42 L]

15

lllustration of minimization algorithm

There is no way to mark the only unmarked pair (q1, ¢2)
Obtain minimized DFA by collapsing ¢1, ¢2 to a single state

qQ 91 42 g3
qo vV IV |V
q1 v
a2 s

15

lllustration of minimization algorithm

15

Exercise

Convert the following DFA to a DFA with 3 states

16

