Lexer Automatic Construction: Big Picture

Input: Token Spec

- List of regular expressions (RE) in priority order

Output: Lexer

- Reads an input stream and breaks it up into tokens according to REs

Algorithm

- Convert REs into non-deterministic finite automata (NFA)
- Convert NFA to DFA
- Convert DFA into transition table
Lexer Automatic Construction: Example

- RE for tokens:

- NFA:

- DFA:

- Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Error</td>
</tr>
<tr>
<td>1</td>
<td>Error</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Error</td>
<td>Error</td>
</tr>
</tbody>
</table>
Lexer Automatic Construction: Example

Token Specification

- ab \{Action 1\}
- aab \{Action 2\}
- $a+$ \{Action 3\}

NFA

DFA

Example:

Input: aab

- $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_2$

$\Sigma = \{a, b\}$
Kleene’s Theorem

Theorem
A language L can be described by regular expression if and only if L is the language accepted by a finite automaton.

Algorithms:
- Regular expression \Rightarrow Automaton
 - important for lexer construction
- Automaton \Rightarrow Regular expression
 - interesting method in formal languages theory
• Build the finite automaton inductively, based on the definition of regular expressions

\[
\begin{align*}
\text{\(a\)} & \\
\epsilon & \\
\emptyset &
\end{align*}
\]
RE \Rightarrow Finite Automaton

Alternation $R_1 \mid R_2$

Concatenation $R_1 \cdot R_2$

Final States

no final anymore
Alternation R^*
Question

- Construct an NFA for the regular expression \((ab)^* \mid b^*\)
Exercise

Question

• Construct an NFA for the regular expression \((ab)^* \mid b^*\)

Answer
DFA Minimization

• Generated DFAs may have a large number of states
• **DFA Minimization**: Converts a DFA to another DFA that:
 • recognizes the same language
 • has a minimum number of states
• Increases time/space efficiency

Both DFAs accept: \(((a | b)b^*a)^*\)
For every regular language L there exists a unique minimal DFA that recognizes L
- uniqueness up to renaming of states (isomorphism)

Minimal DFA can be found mechanically
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to q_3

$$\Sigma = \{a, b\}$$
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to q_3

- q_2 and q_6 are equivalent states: we can unify them

- If DFA is in q_1 or q_5:
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states

- q_1 and q_5 are equivalent states: we can unify them

$\Sigma = \{a, b\}$
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to \(q_3 \)
- \(q_2, q_6 \) are both accepting sinks with self-loop for any character in \(\Sigma \)
- Any string reaches \(q_2 \) or \(q_6 \) is guaranteed to be accepted later
- \(q_2 \) and \(q_6 \) are equivalent states: we can unify them

\[
\Sigma = \{a, b\}
\]
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to q_3
- q_2, q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are equivalent states: we can unify them

$\Sigma = \{a, b\}$
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to q_3
- q_2, q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are equivalent states: we can unify them

- If DFA is in q_1 or q_5:
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states

- q_1 and q_5 are equivalent states: we can unify them

$\Sigma = \{a, b\}$
DFA Minimization: Example

- Remove unreachable states: there is no path from initial state to q_3
- q_2, q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them

- If DFA is in q_1 or q_5:
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states
- q_1 and q_5 are **equivalent** states: we can unify them

\[\Sigma = \{a, b\}\]
Equivalent States

Intuition

- Two states are equivalent if all subsequent behavior from those states is the same
- Equivalent states may be unified without affecting DFA’s behavior

Definition

- We say that states \(p \) and \(q \) are equivalent if for all \(w \):
 \(\hat{\delta}(p, w) \) is an accepting state iff \(\hat{\delta}(q, w) \) is an accepting state
- \(\hat{\delta} \) is the transition function extended for words
DFA Minimization: Procedure

- Write down all pairs of state as a table
- Every cell in table denotes if corresponding states are equivalent
- Table is initially unmarked
- We mark pair \((p_i, p_j)\) when we discover \(p_i\) and \(p_j\) are not equivalent
DFA Minimization: Procedure

1. Start by marking all cells \((q_i, q_j)\) where one of them is final and other is non-final.

2. Look for unmarked pairs \((q_i, q_j)\) such that for some \(c \in \Sigma\), the pair \((\delta(q_i, c), \delta(q_j, c))\) is marked. Then mark \((q_i, q_j)\).

3. Repeat step 2 until no such unmarked pairs remain.
Illustration of minimization algorithm

First mark accepting/non-accepting pairs
Illustration of minimization algorithm

(q_1, q_3) is unmarked,

$q_1 \xrightarrow{b} q_0,$

$q_3 \xrightarrow{b} q_1,$

and (q_0, q_1) is marked,

so mark (q_1, q_3)
(q_1, q_3) is unmarked,
q_1 \xrightarrow{b} q_0,
q_3 \xrightarrow{b} q_1,
and (q_0, q_1) is marked,
so mark (q_1, q_3)
(\(q_2, q_3\)) is unmarked,

\(q_2 \xrightarrow{b} q_0\),

\(q_3 \xrightarrow{b} q_1\),

and \((q_0, q_1)\) is marked,

so mark \((q_2, q_3)\)
Illustration of minimization algorithm

(q_2, q_3) is unmarked,
$q_2 \xrightarrow{b} q_0,$
$q_3 \xrightarrow{b} q_1,$
and (q_0, q_1) is marked,
so mark (q_2, q_3)
There is no way to mark the only unmarked pair \((q_1, q_2)\)
Obtain minimized DFA by collapsing \(q_1, q_2\) to a single state
Illustration of minimization algorithm
Convert the following DFA to a DFA with 3 states