CSCI 742 - Compiler Construction

Lecture 37
Loop Optimizations
Instructor: Hossein Hojjat

April 25, 2018
Program Loops

- **Loop**: a computation repeatedly executed until a terminating condition is reached
- **High-level loop constructs**:
 - While loop: `while(E) S`
 - Do-while loop: `do S while(E)`
 - For loop: `for(i=1; i<=u; i+=c) S`

- **90/10 rule**: 90% of any computation is normally spent in 10% of the code (loops)
- Control-flow graph can help give us useful information
- How to analyze the control-flow graph to detect loops?
- Some techniques to optimize loops
Some Loop Optimizations

- Loop-invariant code motion
 - Pre-compute before entering the loop
- Strength Reduction
 - Replace expensive operations (multiplications) with cheaper ones (additions)
- Elimination of induction variables
 - Induction variable: variable whose value on each loop iteration is a linear function of the iteration index
 - In most cases induction variables can be removed (if not used after loop)
- Elimination of null and array-bounds checks
 - Use data-flow analysis to prove integer range
- Loop unrolling to reduce number of control transfers
Detecting Loops

- Need to identify loops in the program
- Easy to detect loops in high-level constructs
- Harder to detect loops in low-level code or in general control-flow graphs

Examples where loop detection is difficult:

- Languages with unstructured `goto` constructs: structure of high-level loop constructs may be destroyed
- Java bytecode level (without high-level source program): only low-level code is available
Basic Blocks

- In some applications (e.g. loop detection) control-flow graph of basic block is more convenient
- Basic block is a sequence of instructions
 - no branches out from the middle of basic block
 - no branches into the middle of basic block
- Basic block should be maximal
- Execution of basic block
 - starts with first instruction
 - includes all instructions in basic block
Basic Block Construction

- Start with control-flow graph of instructions
- Visit all edges in graph
- Merge adjacent edges
x = 0;
z = x * z;
L1: c = z / w;
 if (c < y) goto L2;
e = z / c;
f = e + 1;
L2: g = f;
 h = t - g;
 if (e > 0) goto L3;
goto L1;
L3: return
Control-Flow Analysis

- Goal: identify loops in the control flow graph

A loop in the CFG:

- Is a set of basic blocks
- Has a **loop header**: node in a loop that has no immediate predecessors in the loop
- Has a **back edge** from one of its nodes to the header
• Goal: identify loops in the control flow graph

A loop in the CFG:

• Is a set of basic blocks
• Has a loop header: node in a loop that has no immediate predecessors in the loop
• Has a back edge from one of its nodes to the header
Dominators

- Use concept of dominators in CFG to identify loops
- Node d dominates node n if all paths from the entry node to n go through d

- Every node dominates itself
- 1 dominates 1, 2, 3, 4
- 2 does not dominate 4
- 3 does not dominate 4

Intuition:

- Header of a loop dominates all nodes in loop body
- Back edges = edges whose heads dominate their tails
- Loop identification = back edge identification
Immediate Dominators

- CFG entry node dominates all CFG nodes
- If d_1 and d_2 dominate n, then either
 - d_1 dominates d_2, or
 - d_2 dominates d_1
- d strictly dominates n if d dominates n and $d \neq n$
- **Immediate dominator** $idom(n)$ of a node n: the unique last strict dominator of n on any path from entry node
Dominator Tree

- Build a dominator tree as follows:
 - Nodes are nodes of control flow graph
 - Root is CFG entry node
 - Edge from d to n if d immediate dominator of n
Exercise

- Build the dominator tree for the following control flow graph
Exercise

- Build the dominator tree for the following control flow graph
Data-flow-like Algorithm for Computing Dominators

• Let $\mathcal{N} =$ set of all basic blocks
• Lattice: $(2^{\mathcal{N}}, \subseteq)$
• Has finite height
• Meet is set intersection, top element is \mathcal{N}

Formulate problem as a system of constraints

• Define $\text{dom}(n) =$ set of nodes that dominate n
• $\text{dom}(n_0) = \{n_0\}$ where n_0 is the entry node
• $\text{dom}(n) = \bigcap\{\text{dom}(m) \mid m \in \text{pred}(n)\} \cup \{n\}$
 i.e, the dominators of n are the dominators of all of n’s predecessors and n itself
• 4 \rightarrow 7 \text{ is a back edge: head } 4 \text{ dominates tail } 7

• 4 \in \text{dom}(7)
• 4 → 7 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)
Dominator Computation

- 7 → 4 is a back edge: head 4 dominates tail 7
- 4 ∈ dom(7)

- 1, 2
- 1, 3
- 1, 2, 3, 4, 5, 6, 7
- 1, 2, 3, 4, 5, 6, 7
- 1, 2, 3, 4, 5, 6, 7
Dominator Computation

\begin{itemize}
\item 7 \rightarrow 4 \text{ is a back edge: head } 4 \text{ dominates tail } 7
\end{itemize}

\begin{align*}
\{1\}, \\
\{1, 2\}, \\
\{1, 3\}, \\
\{1, 3, 4\}, \\
\{1, 2, 3, 4, 5, 6, 7\} \\
\{1, 2, 3, 4, 5, 6, 7\}
\end{align*}
Dominator Computation

\{1\}
\{1, 2\}
\{1, 3\}
\{1, 3, 4\}
\{1, 3, 4, 5\}
\{1, 2, 3, 4, 5, 6, 7\}

\{1, 3, 4, 6\}

\textbullet\quad 7 \rightarrow 4 \text{ is a back edge: head 4 dominates tail 7}
7 → 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)
• Back edge: edge $n \to h$ such that h dominates n

• **Natural loop** of a back edge $n \to h$:
 - h is loop header
 - Set of loop nodes is set of all nodes that can reach n without going through h

• Algorithm to identify natural loops in CFG
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge
Nested Loops

- If two loops do not have same header then
 - Either one loop (inner loop) contained in other (outer loop)
 - Or two loops are disjoint
- If two loops have same header, typically unioned and treated as one loop

Two loops: \{1, 2\} and \{1, 3\}
Unioned: \{1, 2, 3\}
Loop Preheader

- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code
Loop Optimizations

Now we know the loops

Next: optimize these loops

- Loop invariant code motion (this lecture)
- Strength reduction of induction variables
- Induction variable elimination
• If a computation produces the same value in every loop iteration, move it out of the loop

```c
for( i = 1; i <= N; i++ ) {  
x = x + 1;
    // inner loop
    for( j = 1; j <= N; j++ )
        a[i][j] = 100*N + 10*i + j + x;
}
```
If a computation produces the same value in every loop iteration, move it out of the loop.

```plaintext
t1 = 100 * N;
for (i = 1; i <= N; i++) {
    x = x + 1;
    // inner loop
    for (j = 1; j <= N; j++)
        a[i][j] = 100 * N + 10 * i + j + x;
}
```
• If a computation produces the same value in every loop iteration, move it out of the loop

t1 = 100*N;
for(i = 1; i <= N; i++) {
 x = x + 1;
 // inner loop
 for(j = 1; j <= N; j++)
 a[i][j] = t1 + 10*i + j + x;
}
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

```c
    t1 = 100*N;
    for( i = 1; i <= N; i++) {
        x = x + 1;
        t2 = 10*i + x;
        for( j = 1; j <= N; j++)
            a[i][j] = t1 + 10*i + j + x;
    }
```
• If a computation produces the same value in every loop iteration, move it out of the loop

```c
int t1 = 100*N;
for (int i = 1; i <= N; i++) {
    int x = x + 1;
    int t2 = 10*i + x;
    for (int j = 1; j <= N; j++)
        a[i][j] = t1 + t2 + j + x;
}
```
An instruction \(a = b \ OP c \) is loop-invariant if each operand is:
- Constant, or
- Has all definitions outside the loop, or
- Has exactly one definition, and that is a loop-invariant computation.