Compiler Phases

Source Code (concrete syntax)

```
if (x == 0) x = x + 1;
```

Regular Expressions for Tokens

Token Stream

```
if ( x == 0 ) x = x + 1;
```

Context-Free Grammar

Abstract Syntax Tree (AST)

```
    IF
     ==
     x
     0
     ==
     x
     +
     x
     1
```

```
    IF
     boolean
     ==
     x
     int
     0
     int
     ==
     x
     int
     +
     x
     int
     1
     int
```

```
16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...
```

Lexical Analysis

Syntax Analysis (Parsing)

Semantic Analysis (Name Analysis, Type Analysis, ...)

Attributed AST

Error

Code Generation
Lexical Analysis

- **Goal:** Partition input string into meaningful elements called tokens
- Token is a syntactic category:
 - In English: verbs, nouns, pronouns, adverbs, adjectives, ...
 - In programming language: identifier, integer, keyword, semicolon, ...

Input:
```plaintext
if ( x == 0 ) x = x + 1;
```

Output:
```
IF, LPAREN, ID(x), EQUALS, INTLIT(0), RPAREN, ID(x), EQSIGN, ID(x), PLUS, INTLIT(1), SEMICOLON
```
Lexical Analysis

- A lexical analyzer (“lexer” or “scanner”) has the following tasks:
 1) Recognize substrings corresponding to tokens
 2) Return tokens with their categories

- There are finitely many token categories
 - Identifier
 - LPAREN
 - RPAREN
 - COLON
 - ... (many, but finitely many)

- There is unbounded number of instances of token classes like Identifier
Lexical Analysis

- Output of lexical analysis is a stream of tokens which is input to parser
- Parser relies on token category
 - For example, it treats identifiers and keywords differently
- We use token categories when writing grammars for parsing
- **Regular languages** can be used to describe valid tokens of almost every programming language
Languages

- Alphabet Σ: Finite set of elements
 - For lexer: Characters
 - For parser: Token classes
- Words (strings): Sequence of elements from the alphabet Σ
 - Special case: empty word ϵ
- Σ^*: Set of all words over Σ
- Language over Σ: a subset of Σ^*
• $\Sigma = \{a, b\}$
• $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \cdots \}$

Examples of two languages, subsets of Σ^*:

• $L_1 = \{a, bb, ab\}$ (finite language, three words)
• $L_2 = \{ab, abab, ababab, \cdots \} = \{(ab)^n | n \geq 1\}$ (infinite language)
Operation on Languages

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>union of L_1 and L_2 written $L_1 \cup L_2$</td>
<td>$L_1 \cup L_2 = { s \mid s \in L_1 \lor s \in L_2 }$</td>
</tr>
<tr>
<td>concatenation of L_1 and L_2 written $L_1.L_2$</td>
<td>$L_1.L_2 = { st \mid s \in L_1 \land t \in L_2 }$</td>
</tr>
<tr>
<td>Kleene closure of L written L^*</td>
<td>$L^* = \bigcup_{i=0}^{\infty} L^i$</td>
</tr>
<tr>
<td>positive closure of L written L^+</td>
<td>$L^+ = \bigcup_{i=1}^{\infty} L^i$</td>
</tr>
</tbody>
</table>

- L^i is recursively defined
 - $L^0 = \{ \epsilon \}$ (the language consisting only of the empty string)
 - $L^1 = L$
 - $L^{i+1} = \{ wv : w \in L^i \land v \in L \}$ for each $i > 0$
• $L = \{a, ab\}$
• $L.L = \{aa, aab, aba, abab\}$
• $L* = \{\epsilon, a, ab, aa, aab, aba, abab, aaa, \ldots\}$
• $= \{w \mid$ immediately before each b there is $a \}$
Star Operation: Example

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages

\(\emptyset \)
\(\epsilon \)
\(\emptyset^* = \{ \epsilon \} \) (because \(\emptyset^0 = \{ \epsilon \} \))
\(\{ \epsilon \}^* = \{ \epsilon \} \)
Star Operation: Example

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages

- When is L^* finite?
Star Operation: Example

- Star allows us to define infinite languages starting from finite ones
- We can use it to describe some of those infinite but reasonable languages

- When is L^* finite?
- Only in these two cases:
 - $\emptyset^* = \{\epsilon\}$ (because $\emptyset^0 = \{\epsilon\}$)
 - $\{\epsilon\}^* = \{\epsilon\}$
Properties of Words

- Let $w_i \in \Sigma^*$ be a word
- Concatenation is associative:
 \[(w_1.w_2).w_3 = w_1.(w_2.w_3)\]
- Empty word ϵ is left and right identity:
 \[w.\epsilon = w\]
 \[\epsilon.w = w\]
- Cancellation property
 - If $w_1.w_3 = w_1.w_2$ then $w_3 = w_2$
 - If $w_3.w_1 = w_2.w_1$ then $w_3 = w_2$
- There are many other properties, many easily provable from definition of operations
Properties of Words

Length of a word

- $|\epsilon| = 0$
- $|c| = 1$ if $c \in \Sigma$
- $|w_1.w_2| = |w_1| + |w_2|$ if $w_i \in \Sigma^*$

Reverse of a word

- $\epsilon^{-1} = \epsilon$
- $c^{-1} = c$ if $c \in \Sigma$
- $(w_1.w_2)^{-1} = w_2^{-1}.w_1^{-1}$
Fact about Indexing Concatenation

- Concatenation of w and v has these letters:

$$w(0) \cdots w(|w|-1) \cdot v(0) \cdots v(|v|-1)$$

- Thus, for every i where $0 \leq i \leq |w| + |v| - 1$

$$(wv)(i) = w(i), \quad \text{if } i < |w|$$

$$(wv)(i) = v(i-|w|), \quad \text{if } i \geq |w|$$
Regular Expressions

- Notations to describe regular languages
 - Regular expressions (RE)
 - Regular grammars

- Regular expression over alphabet Σ:
 1. ϵ is a RE denoting the set $\{\epsilon\}$
 2. if $a \in \Sigma$, then a is a RE denoting $\{a\}$
 3. if r and s are REs, denoting $L(r)$ and $L(s)$, then:
 - $r \mid s$ is a RE denoting $L(r) \cup L(s)$
 - $r \cdot s$ is a RE denoting $L(r).L(s)$
 - r^* is a RE denoting $L(r)^*$

- Precedence: Closure then Concatenation then Alternation
Regular Expressions

- Regular expressions are just a notation for some particular operations on languages
 \[
 \text{letter (letter } \mid \text{ digit)}^*
 \]

- Denotes the set
 \[
 \text{letter (letter } \cup \text{ digit)}^*
 \]

- Any finite language \(\{w_1, \cdots, w_n\} \) can be described using regular expression
 \[
 w_1 \mid \cdots \mid w_n
 \]
Regular Expressions

Some RE operators can be defined in terms of previous ones

- $[a..z] = a | b | \cdots | z$ (use ASCII ordering)
- $e?$ (optional expression) $= e \mid \epsilon$
- $e+$ (repeat at least once)
- $!e$ (complement) $= \Sigma^* \setminus e$
- $e_1 \& e_2$ (intersection) $= !(!e_1 \mid !e_2)$
Find a regular expression that generates all alternating sequences of 0 and 1 with arbitrary length (including lengths zero, one, two, ...).

For example, the alternating sequences of length one are 0 and 1, length two are 01 and 10, length three are 010 and 101. Note that no two adjacent character can be the same in an alternating sequence.