Compiler Phases

Source Code
(concrete syntax)

```
if (x == 0) x = x + 1;
```

Token Stream

```
if (x == 0) x = x + 1;
```

Abstract Syntax Tree
(AST)

```
IF
  ==
  x
  0
  =
  x
  +
  x
  1
```

Attributed AST

```
IF
  boolean
  ==
  x
  int 0
  =
  int x
  +
  int x
  1
```

Machine Code

```
16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...
```
• Type theory covers a huge range of topics
• Several lectures in the courses
 - Programming Language Concepts (344)
 - Programming Language Theory (740)
• In this course we do not cover the theoretical aspects of type system design
• We are mostly interested in type checking as a major component of the semantic analysis phase
What is a type?

• Type: a set of values and a set of operations on those values
• Example: Integers

  ```java
  int x, y;
  ```
 means:
 - `x, y ∈ [−2^{31}, 2^{31})`
 - Operations `+ - < <= mod ...` are possible on `x` and `y`

• Type errors:
 improper, type-inconsistent operations during program execution

• Type safety: absence of type errors at run time
How to Ensure Type-Safety?

Bind (assign) types, then check types

Type binding

- Defines types for constructs in the program (e.g., variables, functions)
- Can be either explicit (boolean \(x \)) or implicit (\(x = \text{false} \))
- Type safety: correctness with respect to the type bindings

Type checking

- Static semantic checks to enforce the type safety of the program
- Enforce a set of type-checking rules
Type Check Examples

• Operators (such as +) receive the right types of operands
• User-defined functions receive the right types of operands
• LHS of an assignment should be "assignable"
• Variables are assigned the expected kinds of values
• Return statement must agree with return type
• Class members accessed appropriately
Static vs. Dynamic Typing

- **Statically** typed language: types are defined and checked at compile-time, and do not change during the execution of the program.
 - E.g., C, Java, Pascal
- **Dynamically** typed language: types defined and checked at run-time, during program execution.
 - E.g., Lisp, Scheme, Smalltalk
Why Static Checking?

- Efficient code: dynamic checks slow down the program
- Guarantees that all executions will be safe
- With dynamic checking, you never know when the next execution of the program will fail due to a type error

Drawbacks

- Adds an annotation burden for programmers
- Static type safety is a conservative approximation of the values that may occur during all possible executions
- It may reject some type-safe programs unfairly
Suitable Formalism

- We have used the following formal notations for specifying the first two phases of compiler:
 - Regular expressions for lexical analysis
 - Context-free grammars for parsers
- We use **inference systems** from logic to formalize type checking
 - Similar to what we did in name analysis
- Inference systems are suitable for performing computations of form:

 If the first expression is of type T and the second expression is of type T' then the third expression must be of type T''
Background: Inference Systems

- Example inference rule:

 All great universities have smart students Premise 1
 RIT is a great university Premise 2
 RIT has smart students Conclusion

- Example inference rule:

 e_1 has type int Premise 1
 e_2 has type int Premise 2
 $e_1 + e_2$ has type int Conclusion
• An inference system has two parts:
 1. Definition of **Judgments**
 - Judgment: statement asserting a certain fact for an object
 2. Finite set of **Inference Rules**

• An inference rule has:
 1. a finite number of judgments P_1, P_2, \cdots, P_n as premises;
 2. a single judgment C as conclusion

• If a rule has no premises, it is called an **axiom**

\[
P_1 \quad P_2 \quad \cdots \quad P_n
\]

\[
\begin{array}{cccc}
P_1 & P_2 & \cdots & P_n \\
\hline
C & & &
\end{array}
\]
(Rule name)

Premises above the line (0 or more)
Conclusion below the line
Example: Use an inference system to define the set of even numbers

- Judgment: $\text{Even}(n)$ asserts that n is an even number
- Inference rules:
 - Axiom:
 \[
 \frac{\text{Even}(0)}{(\text{Even0})}
 \]
 - Successor Rule:
 \[
 \frac{\text{Even}(n)}{\text{Even}(n + 2)} \quad (\text{EvenS})
 \]
To derive more judgments we create trees of inference rules:

- **Even**

- **Even**

- **Even**

- **Even**

Derivation Tree

\[
\begin{align*}
\text{Even}(0) & \quad \text{(Even0)} \\
\hline \\
\text{Even}(n) & \quad \frac{\text{Even}(n)}{\text{Even}(n+2)} \quad \text{(EvenS)} \\
\hline \\
\text{Even}(0) & \quad \text{(Even0)} \\
\hline \\
\text{Even}(2) & \quad \text{(EvenS)} \\
\hline \\
\text{Even}(4) & \quad \text{(EvenS)} \\
\hline \\
\text{Even}(6) & \quad \text{(EvenS)}
\end{align*}
\]
Derivation Tree

\[
\begin{array}{c}
\text{Even}(0) \\
\hline
\text{Even}(0) \quad \text{(Even0)}
\end{array}
\quad \quad
\begin{array}{c}
\text{Even}(n) \\
\hline
\text{Even}(n+2) \quad \text{(EvenS)}
\end{array}
\]

- To derive more judgments we create trees of inference rules

\[
\begin{array}{c}
\text{Even}(0) \\
\hline
\text{Even}(0) \quad \text{(Even0)}
\end{array}
\quad \quad
\begin{array}{c}
\text{Even}(2) \\
\hline
\text{Even}(2) \quad \text{(EvenS)}
\end{array}
\quad \quad
\begin{array}{c}
\text{Even}(4) \\
\hline
\text{Even}(4) \quad \text{(EvenS)}
\end{array}
\quad \quad
\begin{array}{c}
\text{Even}(6) \\
\hline
\text{Even}(6) \quad \text{(EvenS)}
\end{array}
\]

- Does \text{Even}(1) hold?
- No, because there exists no possible derivation
Example: Use an inference system to define the less-than relation

- Judgment: \(n < m \) asserts that \(n \) is smaller than \(m \)
- Inference rules:
 - Axiom:
 \[
 n < n + 1 \quad \text{(Suc)}
 \]
 - Transitivity Rule:
 \[
 \frac{k < n \quad n < m}{k < m} \quad \text{(Trans)}
 \]

Exercise: Prove \(0 < 3 \).
Type Judgments and Type Rules

- \(e \) type checks to \(T \) under \(\Gamma \) (type environment)

\[\Gamma \vdash e : T \]

- Types of constants are predefined
- Type binding: types of variables are specified in the source code

- If \(e \) is composed of sub-expressions

\[\frac{\Gamma \vdash e_1 : T_1 \quad \cdots \quad \Gamma \vdash e_n : T_n}{\Gamma \vdash e : T} \]
Type Judgments and Type Rules

\[\Gamma \vdash e : T \]

If the (free) variables of \(e \) have types given by the type environment gamma, then \(e \) (correctly) type checks and has type \(T \)

\[\Gamma \vdash e_1 : T_1 \quad \cdots \quad \Gamma \vdash e_n : T_n \]

\[\Gamma \vdash e : T \]

If \(e_1 \) type checks in \(\Gamma \) and has type \(T_1 \)
and ...
and \(e_n \) type checks in \(\Gamma \) and has type \(T_n \)
then \(e \) type checks in \(\Gamma \) and has type \(T \)
Type Rules with Environment

```
int x;
int y;
(x < y) ? x : (y + 1)
```

Type Rules:

\[
\frac{(x : T) \in \Gamma}{\Gamma \vdash x : T}
\]

\[
\text{IntConst}(k) : \text{int}
\]

\[
\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash (e_1 < e_2) : \text{boolean}}
\]

\[
\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash (e_1 + e_2) : \text{int}}
\]

\[
\frac{\Gamma \vdash b : \text{boolean} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (b \ ? \ e_1 \ : \ e_2) : T}
\]