Recap: Name Analysis Goals

- For each declaration of identifier, identify where the identifier refers to
- Name analysis:
 - maps, partial functions (math)
 - environments (PL theory)
 - symbol table (implementation)
- Report some simple semantic errors
- We usually introduce symbols for things denoted by identifiers
- Symbol tables map identifiers to symbols
Notations for Maps

- Mathematical notation of map is a partial function \(f : A \rightarrow B \) (that is a function from a subset of \(A \) to \(B \))

 \[
 - f \subseteq A \times B \\
 - \forall x. \forall y_1. \forall y_2. (x, y_1) \in f \land (x, y_2) \in f \rightarrow y_1 = y_2
 \]

 We define \(\text{dom}(f) = \{ x \mid \exists y. (x, y) \in f \} \)

- Sometimes we denote map \(\{(k_1, v_1), \cdots, (k_n, v_n)\} \) by \(\{k_1 \mapsto v_1, \cdots, k_n \mapsto v_n\} \)

- The key operation is function update

 \[
 f[k := v] = \{(x, y) \mid (x = k \land y = v) \lor (x \neq k \land (x, y) \in f)\}
 \]

 If the value was defined before, now we redefine it

- A generalization of update is overriding one map by another

 \[
 f \oplus g = \{(x, y) \mid (x, y) \in g \lor (x \not\in \text{dom}(g) \land (x, y) \in f)\}
 \]

- Is \(f \oplus g = g \oplus f \)?
Checking each variable is declared

- Environment (Symbol Table): \(\Gamma = \{(x_1, T_1), \cdots, (x_n, T_n)\} \)

- Identifier and symbol (type,...)

- \(\Gamma \vdash e \): \(e \) uses only variables declared in \(\Gamma \)

- Example: if \(\Gamma = \{(x, \text{int}), (y, \text{boolean}), (z, \text{int})\} \)

 then
 - \(\Gamma \vdash (x + 5) - z \)
 - \(\Gamma \vdash x = z + 1 \) but
 - \(\Gamma \nvdash x = w + 1 \) as \(w \) is not declared in \(\Gamma \)
Checking each variable is declared

(Variable Use)
\[
\frac{x \in dom(\Gamma)}{\Gamma \vdash x}
\]

\[
\frac{\Gamma \vdash e_1 \quad \Gamma \vdash e_2}{\Gamma \vdash e_1 + e_2}
\]

\[
\frac{\Gamma \vdash s \quad \Gamma \vdash \bar{s}}{\Gamma \vdash s; \bar{s}}
\]

\[
\frac{x \in dom(\Gamma) \quad \Gamma \vdash e}{\Gamma \vdash x = e}
\]

\[
\frac{\Gamma \vdash e_1 \quad \Gamma \vdash e_2}{\Gamma \vdash e_1 * e_2}
\]

where \(s \) is statement
and \(\bar{s} \) is a statement sequence

\[
\frac{\Gamma[x := \text{int}] \vdash \bar{s}}{\Gamma \vdash (\text{int } x); \bar{s}}
\]
int x = 0;
{
int y = 0;
x = y - 1;
{
boolean x = false;
x = (y < 0);
}
x = x + 5;
}

Γ = {(x, int)}
Γ = {(x, int), (y, int)}
Γ = {(x, boolean), (y, int)}
Γ = {(x, int), (y, int)}
Γ = {(x, int)}
Function definitions

\[
\Gamma \oplus \{(x_1, T_1), \cdots, (x_n, T_n)\} \vdash \bar{s} \\
\Gamma \vdash T m \ (T_1 \ x_1, \cdots, T_n \ x_n)\{\bar{s}\}
\]

class World {
 int sum;
 int value;
 void add(int n) {
 sum = sum + n;
 }
}

Instantiating the inference rule:

\[
\Gamma = \{(\text{sum}, \text{int}), (\text{value}, \text{int})\}
\]

\[
\Gamma \oplus \{(n, \text{int})\} \vdash \text{sum} = \text{sum} + n
\]

\[
\Gamma \vdash \text{void add(int n) \{sum = sum + n;\}}
\]
Symbol Table Γ Contents

What kind of information do we need to store for each identifier?

Variables (globals, fields, parameters, locals)

- Need to know types, positions - for error messages
- Later: memory layout
 - Example: To compile $x.f = y$ into
 $$\text{memcpy}(\text{addr}_y, \text{addr}_x+6, 4)$$
 - 3rd field in an object should be stored at offset e.g. +6 from the address of the object
 - the size of data stored in $x.f$ is 4 bytes

- Sometimes more information explicit: whether variable local or global

Classes, methods, functions

- Recursively have their own symbol tables
In Java, the standard model is a mutable graph of objects.

It seems natural to represent references to symbols using mutable fields (initially null, resolved during name analysis).

Alternative way in functional languages:
- store the backbone of the graph as a algebraic data type (immutable)
- pass around a map linking from identifiers to their declarations
class World {
 int sum;
 void add(int foo) {
 sum = sum + foo;
 }
 void sub(int bar) {
 sum = sum - bar;
 }
 int count;
}

\[\Gamma_0 = \{(\text{sum, int}), (\text{count, int})\} \]

\[\Gamma_1 = \Gamma_0[\text{foo} := \text{int}] \]

\[\Gamma_0[\text{foo} := \text{int}] = \Gamma_0[\text{bar} := \text{int}] = \Gamma_0 \]
class World {
 int sum;
 void add(int foo) {
 sum = sum + foo;
 }
 void sub(int bar) {
 sum = sum - bar;
 }
 int count;
}

\[
\Gamma_0 = \{(\text{sum, int}), (\text{count, int})\}
\]

\[
\Gamma_1 = \Gamma_0[\text{foo := int}]
\]

change table, record change

\[
\Gamma_0 \text{ revert changes from table}
\]

\[
\Gamma_1 = \Gamma_0[\text{bar := int}]
\]

change table, record change

\[
\Gamma_0 \text{ revert changes from table}
\]
Imperative Symbol Table

- Hash table, mutable \(\text{Map}[\text{ID}, \text{Symbol}] \)
- Example:
 - hash function into array
 - array has linked list storing (ID, Symbol) pairs
- **Undo Stack**: to enable entering and leaving scope
- Entering new scope (function, block):
 - add beginning-of-scope marker to undo stack
- Adding nested declaration (ID, sym)
 - lookup old value symOld, push old value to undo stack
 - insert (ID, sym) into table
- Leaving the scope
 - go through undo stack until the marker, restore old values