How can I show that $$ \lim_{A\rightarrow \infty} \int_0^A \frac{\sin(x)}{x}dx\;=\;\frac{\pi}{2}?$$ I know that can use the fact that, for $x>0$, $$x^{-1}\;=\;\int_0^\infty e^{-xt}dt$$ but I'm not sure how to begin.
Proving an Integral Identity with Increasing Bounds
$\begingroup$
real-analysis
integration
analysis