$\begingroup$

If $11^\text{10}-1$ is divided by $100$, then solve for '$x$' of the below term $$11^\text{10}-1 = x \pmod{100}$$

Whatever I tried:

$11^\text{2} \equiv 21 \pmod{100}$.....(1)

$(11^\text{2})^\text{2} \equiv (21)^\text{2} \pmod{100}$

$11^\text{4} \equiv 441 \pmod{100}$

$11^\text{4} \equiv 41 \pmod{100}$

$(11^\text{4})^\text{2} \equiv (41)^\text{2} \pmod{100}$

$11^\text{8} \equiv 1681 \pmod{100}$

$11^\text{8} \equiv 81 \pmod{100}$

$11^\text{8} × 11^\text{2} \equiv (81×21) \pmod{100}$ ......{from (1)}

$11^\text{10} \equiv 1701 \pmod{100} \implies 11^\text{10} \equiv 1 \pmod{100}$

Hence, $11^\text{10} -1 \equiv (1-1) \pmod{100} \implies 11^\text{10} - 1 \equiv 0 \pmod{100}$ and thus we get the value of $x$ and it is $x = 0$ and $11^\text{10}-1$ is divisible by $100$.

But this approach take a long time for any competitive exam or any math contest without using calculator. Any easier process on how to determine the remainder of the above problem quickly? That will be very much helpful for me. Thanks in advance.