Let $a$ and $b$ be real numbers and $p>0$. What is the best way to prove that $|a+b|^p<2^p(|a|^p+|b|^p)$?
Yet another inequality: $|a+b|^p<2^p(|a|^p+|b|^p)$
4 Answers
Here is an alternative for the case $p\ge1$ we may also use Hölder's inequality $$|a+b|=|1\cdot a +1\cdot b|\leq (1^q+ 1^q)^{1/q}(|a|^p+|b|^p)^{1/p}=2^{1/q}(|a|^p+|b|^p)^{1/p}$$ where $1/q+1/p=1$, which reduces to $$|a+b|^p\le 2^{p/q}(|a|^p+|b|^p)=2^{p(1-1/p)}(|a|^p+|b|^p)=2^{p-1}(|a|^p+|b|^p).$$ For $0
"Please explain inequality $|x^p−y^p|\le|x−y|^p$"
Well,
\begin{align*} |a + b|^p \leq (|a| + |b|)^p &\leq 2^p \text{max}\{|a|^p, |b|^p\}\\ &\leq 2^{p - 1} (|a|^p + |b|^p - |a^p - b^p|)\\ &\leq 2^{p - 1} (|a|^p + |b|^p) \end{align*}
If $0
recent question. If $1\leq p$ you can strengthen the inequality to $|a+b|^p\leq 2^{p-1}(|a|^p+|b|^p)$ by applying convexity of the function $t\mapsto t^p$.
If you divide $2^p$ on both sides, then you get $(|a+b|/2)^p < |a|^p + |b|^p$. Can you see why that would be true?
-
0lol, that's really very easy – 2010-11-20