I'm learning about continued fractions, and I've enjoyed them so far, but I'm unsure if I've done the following correctly. I have no real experience with analysis, so I'm not sure if my reasoning is formal enough, or correct. Any feedback would be appreciated.
Let $\xi$ be an irrational number with continued fraction expansion $\langle a_0,a_1,a_2,a_3\dots\rangle$. Let $b_1,b_2,b_3,\cdots$ be any sequence of positive integers, either finite or infinte. Prove that $\lim_{n\to\infty}\langle a_0,a_1,a_2,\dots,a_n,b_1,b_2,b_3\dots\rangle=\xi$.
I let $r_n=\langle a_0,a_1,\dots,a_n\rangle$ and $\xi'=\langle b_1,b_2,b_3,\dots\rangle$, and let $\beta_n=\langle a_0,a_1,a_2,a_3\dots,a_n,\xi'\rangle$. So*
$$\beta_n-r_n=\beta_n-\frac{h_n}{k_n}=\frac{\xi'h_n+h_{n-1}}{\xi'k_n+k_{n-1}}-\frac{h_n}{k_n}$$ $$=\frac{-(h_nk_{n-1}-h_{n-1}k_n)}{k_n(\xi'k_n+k_{n-1})}=\frac{(-1)^n}{k_n(\xi'k_n+k_{n-1})}$$
But ${k_n}$ is a positive increasing series, $\xi'$ is a positive real number, so as $n$ approaches $\infty$, the denominator goes to $\infty$ while the numerator alternates between $-1$ and $1$, so the fraction tends to $0$. Hence we have that $\lim_{n\to\infty}(\beta_n-r_n)=0$, so $$\lim_{n\to\infty}\beta_n=\lim_{n\to\infty}r_n=\lim_{n\to\infty}\langle a_0,a_1,a_2,\dots,a_n\rangle=\langle a_0,a_1,a_2\dots\rangle=\xi.$$ Hence $\lim_{n\to\infty}\langle a_0,a_1,a_2,\dots,a_n,b_1,b_2,b_3\dots\rangle=\xi$.
If this the correct route to go? As a small side question, how does it make sense to have integers $b_i$ at the end of this sequence, if the sequence is infinite? Thanks!
*If it's not well known, $\{h_n\}$ is the sequence defined by $h_{-2}=0,h_{-1}=1,h_i=a_ih_{i-1}+h_{i-2}$ and $\{k_n\}$ is defined as $k_{-2}=1,k_{-1}=-1, k_i=a_ik_{i-1}+k_{i-2}$, and $r_n=\langle a_0,a_1,\dots,a_n\rangle$, for any sequence of integers $a_0,a_1,a_2\dots$ all positive except perhaps $a_0$.