7
$\begingroup$

A function $f$ is superadditive if $f(x) + f(y) \le f(x+y)$. The question is:

Does a real number $a$ exists such that for all real numbers with $x, y\ \ge \ a $

$$ \Gamma(x) + \Gamma(y) \le \Gamma(x+y) \quad ?$$

  • 0
    Nice question. So, with whuber's solution, a=2 suffices to prove that it is. Now, what's the smallest a so Γ is superaddictive?2011-02-25
  • 0
    It cannot go below $a=1.4324$ the solution of $2\Gamma(x)=\Gamma(2x)$.2012-07-18

1 Answers 1

8

$a = 2$ will do, because (letting $x \ge y$ wlg),

$\Gamma(x+y) \ge \Gamma(x+2) = (x+1)x \Gamma(x) \ge 6 \Gamma(x) \ge \Gamma(x) + \Gamma(x) \ge \Gamma(x) + \Gamma(y)$.