Since $a_k \le k-1$ for $k \ge 2$ we have
$$ \lfloor x \rfloor = \left\lfloor \sum_{k=1}^n \frac{a_k}{k!} \right\rfloor \le a_1
+ \left\lfloor \sum_{k=2}^n \frac{k-1}{k!} \right\rfloor = a_1 $$
as the latter term is $0$ since $ \sum_{k=2}^n \frac{k-1}{k!} = \sum_{k=2}^n \lbrace \frac{1}{(k-1)!} - \frac{1}{k!} \rbrace
= 1 – 1/n! < 1.$
To show $ a_m = \lfloor m! x \rfloor – m \lfloor (m-1)! x \rfloor $ for $m=2,3,\ldots,n$ we note that
$$ \lfloor m! x \rfloor = \left\lfloor m! \sum_{k=1}^n \frac{a_k}{k!} \right\rfloor =
A_m + \left\lfloor m! \sum_{k=m+1}^n \frac{a_k}{k!} \right\rfloor, $$
where $A_m$ is an integer given by
$$A_m = m! \frac{a_1}{1!} + m! \frac{a_2}{2!} + \cdots + m! \frac{a_m}{m!}.$$
However
$$ m! \sum_{k=m+1}^n \frac{a_k}{k!} \le m! \sum_{k=m+1}^n \frac{k-1}{k!}
= m! \sum_{k=m+1}^n \left\lbrace \frac{1}{(k-1)!} - \frac{1}{k!} \right\rbrace $$
$$ = m! \left( \frac{1}{m!} - \frac{1}{n!} \right) = 1 - \frac{m!}{n!} < 1 $$
and hence
$$ \left\lfloor m! \sum_{k=m+1}^n \frac{a_k}{k!} \right\rfloor = 0.$$
Also for $ m > 1 $
$$ m \lfloor (m-1)! x \rfloor = m \left\lfloor (m-1)! \sum_{k=1}^n \frac{a_k}{k!} \right\rfloor $$
$$=m \left\lbrace (m-1)! \frac{a_1}{1!} + (m-1)! \frac{a_2}{2!} + \cdots + (m-1)!
\frac{a_{m -1}}{(m-1)!} \right\rbrace + m \left\lfloor \sum_{k=m}^n \frac{a_k}{k!} \right\rfloor $$
$$= \left( A_m - a_m \right) + m \left\lfloor \sum_{k=m}^n \frac{a_k}{k!} \right\rfloor
= A_m – a_m . $$
since
$$ \sum_{k=m}^n \frac{a_k}{k!} \le \sum_{k=m}^n \frac{k-1}{k!}
= \frac{1}{(m-1)!} - \frac{1}{n!} < 1 .$$
Which proves that for $ m > 1 $
$$ \lfloor m! x \rfloor - m \lfloor (m-1)! x \rfloor = A_m – (A_m – a_m) = a_m . \qquad (1)$$
To prove that $n$ is the smallest integer such that $n! x $ is an integer, suppose that
$ (n-1)! x $ is an integer. Then by $(1)$ we have for $n > 1$
$$ a_{n-1} = (n-1)! x – n! x < 0 $$
contradicting the fact that $a_k \ge 0 .$ And so $ (n-1)! x $ cannot be an integer, and if $ m! x $ is an integer for any $ m < n $ we have $(n-1)(n-2) \cdots m! x = (n-1)! x $ is an integer, another contradiction. Hence $ m! x $ cannot be an integer.
To show that every positive rational number $x$ can be expressed in this form, let $ x = p/q, $ where $ gcd(p,q)=1 \textrm{ and } p,q \in \mathbb{N} $ and let $ n $ be the smallest integer such that $ n! p/q $ is an integer. Define
$$ \begin{align*}
a_1 &= \left\lfloor \frac{p}{q} \right\rfloor
\\ a_m &= \left\lfloor m! \frac{p}{q} \right\rfloor - m \left\lfloor (m-1)! \frac{p}{q} \right\rfloor
\quad \textrm{ for } m > 1. \quad (2)
\end{align*} $$
We note that
$$ \left\lfloor (n-1)! \frac{p}{q} \right\rfloor < (n-1)! \frac{p}{q} , $$
since $ (n-1)! p/q $ is not an integer, and so $a_n > 0 .$
Also, since $ (m-1)! p/q $ is not an integer, for $ m \le n $ we can write
$$ (m-1)! \frac{p}{q} = N_m + r_m \quad \textrm{ where } 0 < r_m < 1 $$
and $N_m$ is an integer. Hence for $m=2,3,\ldots,n$ from $(2)$ we have
$$ a_m = \lfloor mN_m + mr_m \rfloor - mN_m = \lfloor m r_m \rfloor \le m-1.$$
Note also that the $a_m$ are non-negative. Now assume that
$$ \frac{p}{q} = \sum_{k=1}^n \frac{a_k}{k!} \quad (3)$$
then as the $a_k$ satisfy the conditions that each is a non-negative integer with $a_k \le k-1 $ for $k=2,3\ldots,n$ they are uniquely determined by $(1)$ and $a_1 = \lfloor p/q \rfloor .$
It only remains to prove $(3).$ To show this we note that
$$ \begin{align*}
\sum_{k=1}^n \frac{a_k}{k!} &= \left\lfloor \frac{p}{q} \right\rfloor + \sum_{k=2}^n \frac{a_k}{k!}
\\ &= \left\lfloor \frac{p}{q} \right\rfloor +
\sum_{k=2}^n \left\lbrace
\frac{ \left\lfloor k! \frac{p}{q} \right\rfloor - k \left\lfloor (k-1)! \frac{p}{q} \right\rfloor }{k!}
\right\rbrace
\\ &= \left\lfloor \frac{p}{q} \right\rfloor +
\sum_{k=2}^n \frac{ \left\lfloor k! \frac{p}{q} \right\rfloor }{k!} -
\sum_{k=2}^n \frac{ \left\lfloor (k-1)! \frac{p}{q} \right\rfloor }{(k-1)!}
\\ &= \frac {n! p/q}{n!} = \frac{p}{q},
\end{align*} $$
since $n! p/q$ is an integer and all the terms cancel, except the last. This completes the proof.