For all $a, m, n \in \mathbb{Z}^+$,
$$\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$$
For all $a, m, n \in \mathbb{Z}^+$,
$$\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$$
$\rm\ f_{\,n}\: :=\ a^n\!-\!1\ =\ a^{n-m} \: \color{#c00}{(a^m\!-\!1)} + \color{#0a0}{a^{n-m}\!-\!1}.\ $ Hence $\rm\:\ {f_{\,n}\! = \color{#0a0}{f_{\,n-m}}\! + k\ \color{#c00}{f_{\,m}}},\,\ k\in\mathbb Z.\:$ Apply
Theorem $\: $ If $\rm\ f_{\, n}\: $ is an integer sequence with $\rm\ f_{0} =\, 0,\: $ $\rm \:{ f_{\,n}\!\equiv \color{#0a0}{f_{\,n-m}}\ (mod\ \color{#c00}{f_{\,m})}}\ $ for $\rm\: n > m,\ $ then $\rm\: (f_{\,n},f_{\,m})\ =\ f_{\,(n,\:m)} \: $ where $\rm\ (i,\:j)\ $ denotes $\rm\ gcd(i,\:j).\:$
Proof $\ $ By induction on $\rm\:n + m\:$. The theorem is trivially true if $\rm\ n = m\ $ or $\rm\ n = 0\ $ or $\rm\: m = 0.\:$
So we may assume $\rm\:n > m > 0\:$.$\ $ Note $\rm\ (f_{\,n},f_{\,m}) = (f_{\,n-m},f_{\,m})\ $ follows from the hypothesis.
Since $\rm\ (n-m)+m \ <\ n+m,\ $ induction yields $\rm \ (f_{\,n-m},f_{\,m})\, =\, f_{\,(n-m,\:m)} =\, f_{\,(n,\:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
Below is a proof which has the neat feature that it immediately specializes to a proof of the integer Bezout identity for $\rm\:x = 1,\:$ allowing us to view it as a q-analog of the integer case.
E.g. for $\rm\ m,n\ =\ 15,21$
$\rm\displaystyle\quad\quad\quad\quad\quad\quad\quad \frac{x^3-1}{x-1}\ =\ (x^{15}\! +\! x^9\! +\! 1)\ \frac{x^{15}\!-\!1}{x\!-\!1} - (x^9\!+\!x^3)\ \frac{x^{21}\!-\!1}{x\!-\!1}$
for $\rm\ x = 1\ $ specializes to $\ 3\ \ =\ \ 3\ (15)\ \ -\ \ 2\ (21)\:,\ $ i.e. $\rm\ (3)\ =\ (15,21) := gcd(15,21)$
Definition $\rm\displaystyle \quad n' \: :=\ \frac{x^n - 1}{x-1}\:$. $\quad$ Note $\rm\quad n' = n\ $ for $\rm\ x = 1$.
Theorem $\rm\quad (m',n')\ =\ ((m,n)')\ $ for naturals $\rm\:m,n.$
Proof $\ $ It is trivially true if $\rm\ m = n\ $ or if $\rm\ m = 0\ $ or $\rm\ n = 0.\:$
W.l.o.g. suppose $\rm\:n > m > 0.\:$ We proceed by induction on $\rm\:n\! +\! m.$
$\begin{eqnarray}\rm &\rm x^n\! -\! 1 &=&\ \rm x^r\ (x^m\! -\! 1)\ +\ x^r\! -\! 1 \quad\ \ \rm for\ \ r = n\! -\! m \\ \quad\Rightarrow\quad &\rm\qquad n' &=&\ \rm x^r\ m'\ +\ r' \quad\ \ \rm by\ dividing\ above\ by\ \ x\!-\!1 \\ \quad\Rightarrow\ \ &\rm (m', n')\, &=&\ \ \rm (m', r') \\ & &=&\rm ((m,r)') \quad\ \ by\ induction, applicable\ by\:\ m\!+\!r = n < n\!+\!m \\ & &=&\rm ((m,n)') \quad\ \ by\ \ r \equiv n\ \:(mod\ m)\quad\ \ \bf QED \end{eqnarray}$
Corollary $\ $ Integer Bezout Theorem $\ $ Proof: $ $ set $\rm\ x = 1\ $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences and Divisor Theory.
Let $m\ge n\ge 1$. Apply Euclidean Algorithm.
$\gcd\left(a^m-1,a^n-1\right)=\gcd\left(a^{n}\left(a^{m-n}-1\right),a^n-1\right)$. Since $\gcd(a^n,a^n-1)=1$, we get
$\gcd\left(a^{m-n}-1,a^n-1\right)$. Iterate this until it becomes $$\gcd\left(a^{\gcd(m,n)}-1,a^{\gcd(m,n)}-1\right)=a^{\gcd(m,n)}-1$$
More generally, if $a,b,m,n\in\mathbb Z_{\ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $\gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $\,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+\cdots+xy^{k-2}+x^{k-1})\,$
and use $n\mid a,b\iff n\mid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}\mid a^m-b^m,\, a^n-b^n\iff$
$a^{(m,n)}-b^{(m,n)}\mid (a^m-b^m,a^n-b^n)=: d\ \ \ (1)$
$a^m\equiv b^m,\, a^n\equiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $\,mx+ny=(m,n)\,$ for some $x,y\in\Bbb Z$.
$(a,b)=1\iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}\equiv b^{mx}$, $a^{ny}\equiv b^{ny}$ mod $d$.
$a^{(m,n)}\equiv a^{mx}a^{ny}\equiv b^{mx}b^{ny}\equiv b^{(m,n)}\pmod{\! d}\ \ \ (2)$
$(1)(2)\,\Rightarrow\, a^{(m,n)}-b^{(m,n)}=d$
More generally, if $\gcd(a,b)=1$, $a,b,m,n\in\mathbb Z^+$, $a> b$, then $$\gcd(a^m-b^m,a^n-b^n)=a^{\gcd(m,n)}-b^{\gcd(m,n)}$$
Proof: Since $\gcd(a,b)=1$, we get $\gcd(b,d)=1$, so $b^{-1}\bmod d$ exists.
$$d\mid a^m-b^m, a^n-b^n\iff \left(ab^{-1}\right)^m\equiv \left(ab^{-1}\right)^n\equiv 1\pmod{d}$$
$$\iff \text{ord}_{d}\left(ab^{-1}\right)\mid m,n\iff \text{ord}_{d}\left(ab^{-1}\right)\mid \gcd(m,n)$$
$$\iff \left(ab^{-1}\right)^{\gcd(m,n)}\equiv 1\pmod{d}\iff a^{\gcd(m,n)}\equiv b^{\gcd(m,n)}\pmod{d}$$
Let $$\gcd(a^n - 1, a^m - 1) = t$$ then $$a^n \equiv 1 \,\big(\text{ mod } t\big),\quad\text{and}\quad\,a^m \equiv 1 \,\big(\text{ mod } t\big)$$ And thus $$a^{nx + my} \equiv 1\, \big(\text{ mod } t\big)$$ $\forall\,x,\,y\in \mathbb{Z}$
According to the Extended Euclidean algorithm, we have $$nx + my =\gcd(n,m)$$ This follows $$a^{nx + my} \equiv 1 \,\big(\text{ mod } t\big) = a^{\gcd(n,m)} \equiv 1 \big(\text{ mod } t\big)\implies\big( a^{\gcd(n,m)} - 1\big) \big| t$$
Therefore $$a^{\gcd(m,n)}-1\, =\gcd(a^m-1, a^n-1) $$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=\left(p^a-1,p^b-1\right)$, then $$ \left(p^g-1\right)\sum_{k=0}^{\frac ag-1}p^{kg}=p^a-1 $$ and $$ \left(p^g-1\right)\sum_{k=0}^{\frac bg-1}p^{kg}=p^b-1 $$ Thus, we have that $$ \left.p^g-1\,\middle|\,G\right. $$
For $x\ge0$, $$ \left(p^a-1\right)\sum_{k=0}^{x-1}p^{ak}=p^{ax}-1 $$ Therefore, we have that $$ \left.G\,\middle|\,p^{ax}-1\right. $$ If $\left.G\,\middle|\,p^{ax-(b-1)y}-1\right.$, then $$ \left(p^{ax-(b-1)y}-1\right)-p^{ax-by}\left(p^b-1\right)=p^{ax-by}-1 $$ Therefore, for any $x,y\ge0$ so that $ax-by\ge0$, $$ \left.G\,\middle|\,p^{ax-by}-1\right. $$ which means that $$ \left.G\,\middle|\,p^g-1\right. $$
Putting all this together gives $$ G=p^g-1 $$