This may be embarassingly simple, but I can't see it.
Let $M$ be a Riemannian manifold of dimension $n$; fix $x \in M$, and let $B(x,r)$ denote the geodesic ball in $M$ of radius $r$ centered at $x$. Let $V(r) = \operatorname{Vol}(B(x,r))$ be the Riemannian volume of $B(x,r)$. It seems to be the case that for small $r$, $V(r) \sim r^n$, i.e. $V(r)/r^n \to c$ with $0 < c < \infty$. How is this proved, and where can I find it?
Given a neighborhood $U \ni x$ and a chart $\phi : U \to \mathbb{R}^n$, certainly $\phi$ has nonvanishing Jacobian, hence (making $U$ smaller if necessary) bounded away from 0. So $\operatorname{Vol}(\phi^{-1}(B_{\mathbb{R}^n}(\phi(x), r))) \sim r^n$. But I do not see how to relate the pullback $\phi^{-1}(B_{\mathbb{R}^n}(\phi(x), r))$ of a Euclidean ball to a geodesic ball in $M$.