$$S(x) = 1 + \Bigl(1 + \frac{1}{3}\Bigr) \cdot \frac{x^2}{5} \cdot \frac{1}{3} + \Bigl(1 + \frac{1}{3} + \frac{1}{5}\Bigr)\cdot \frac{x^4}{5^{2}} \cdot \frac{1}{5} + \Bigl(1 + \frac{1}{3}+ \frac{1}{5} + \frac{1}{7}\Bigr) \cdot \frac{x^6}{5^{3}} \cdot \frac{1}{7} + \cdots$$
$$=\sum_{k=0}^{\infty} \Bigl(1 + \frac{1}{3}+\cdots+\frac{1}{2k+1}\Bigr) \cdot \left(\frac{x}{\sqrt 5}\right)^{2k} \cdot \frac{1}{2k+1}$$
$$=\frac{1}{x}\int_{0}^x\sum_{k=0}^{\infty} \Bigl(1 + \frac{1}{3}+\cdots+\frac{1}{2k+1}\Bigr) \cdot \left(\frac{y}{\sqrt 5}\right)^{2k}dy$$
$$=\frac{\sqrt 5}{x}\int_{0}^{x/\sqrt 5}\sum_{k=0}^{\infty} \Bigl(1 + \frac{1}{3}+\cdots+\frac{1}{2k+1}\Bigr) t^{2k+1}\frac{dt}{t}.$$
Now let
$$F(t)=\sum_{k=0}^{\infty} \Bigl(1 + \frac{1}{3}+\cdots+\frac{1}{2k+1}\Bigr) t^{2k+1},$$
then
$$F(t)+\frac{t}{2}F(t)=H(t):= \sum_{n=0}^{\infty} \Bigl(1 + \frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\Bigr) t^n.$$
$H(t)$ is the generating function of the harmonic numbers and is well known:
$$H(t)=\frac{-\ln(1-t)}{1-t}.$$
Combining it all together we get that
$$S(x)=\frac{\sqrt 5}{x}\int_{0}^{x/\sqrt 5} \frac{2\ln(1-t)}{t(t-1)(t+2)}dt$$
which probably can be calculated in elementary functions.