I'm trying to compute the variational distance between two negative exponential distributions. If $a$ denotes the value of $x$ where both curves are equal, then:
$$\int_0^{+\infty}\left|\lambda_1e^{-\lambda_1x}-\lambda_2e^{-\lambda_2x}\right|dx$$
$$=-\int_{0}^a(\lambda_1e^{-\lambda_1x}-\lambda_2e^{-\lambda_2x})dx+\int^{+\infty}_a(\lambda_1e^{-\lambda_1x}-\lambda_2e^{-\lambda_2x})dx$$
$$=\left[e^{-\lambda_2x} - e^{-\lambda_1x}\right]_{0}^a +\left[e^{-\lambda_1x} - e^{-\lambda_2x}\right]^{+\infty}_a$$
$$=e^{-\lambda_2a} - e^{-\lambda_1a} -1 +1 +e^{-\infty} - e^{-\infty}-e^{-\lambda_1a}+e^{-\lambda_2a}$$
$$=2\left(e^{-\lambda_2a}-e^{-\lambda_1a}\right).$$
Computing $a$ is not difficult: \begin{eqnarray*} \lambda_1e^{-\lambda_1x}=\lambda_2e^{-\lambda_2x} \Leftrightarrow\ln(\lambda_1)-\lambda_1x&=&\ln(\lambda_2)-\lambda_2x\ \Leftrightarrow x&=&\frac{\ln(\lambda_2)-\ln(\lambda_1)}{\lambda_2-\lambda_1}. \end{eqnarray*}
However, what puzzles me is that I am integrating a positive function, yet depending on how parameters are related to each other, the value of the above result may be negative ... what am I missing?
(sorry for the messy layout, it seems that my &'s are ignored ...)