We can divide $7^{17} - 7^{15}$ by?
The answer is $6$, but how?
Thanks in advance.
We can divide $7^{17} - 7^{15}$ by?
The answer is $6$, but how?
Thanks in advance.
Note that
$7^{17}-7^{15}=(49-1)*7^{15}$
and 48 is divisible by 6.
HINT $\rm\quad X^{n+2} - X^n \;=\; (X^2 - 1)\: X^n \;=\; (X-1)\: (X+1)\: X^n$
Often number identities are more perceptively viewed as special cases of function or polynomial identities. For example, Aurifeuille, Le Lasseur and Lucas discovered so-called Aurifeuillian factorizations of cyclotomic polynomials $\rm\;\Phi_n(x) = C_n(x)^2 - n\ x\ D_n(x)^2\;$. These play a role in factoring numbers of the form $\rm\; b^n \pm 1\:$, cf. the Cunningham Project. Below are some simple examples of such factorizations:
$$\begin{array}{rl} x^4 + 2^2 \quad=& (x^2 + 2x + 2)\;(x^2 - 2x + 2) \\ \frac{x^6 + 3^2}{x^2 + 3} \quad=& (x^2 + 3x + 3)\;(x^2 - 3x + 3) \\ \frac{x^{10} - 5^5}{x^2 - 5} \quad=& (x^4 + 5x^3 + 15x^2 + 25x + 25)\;(x^4 - 5x^3 + 15x^2 - 25x + 25) \\ \frac{x^{12} + 6^6}{x^4 + 36} \quad=& (x^4 + 6x^3 + 18x^2 + 36x + 36)\;(x^4 - 6x^3 + 18x^2 - 36x + 36) \\ \end{array}$$