Let $x_1=x_2=\ldots=x_n=x$, then $f(x^m)=f(x)^m$, and $f(0)=f(0)^m$, so $f(0)$ is either 0,1 or -1.
Now let $y_i=x_i^m$, then we have $f(\frac{1}{n}\sum_{i=1}^n y_i)=\frac{1}{n}\sum_{i=1}^n f(y_i)$ for any $y_i\in \mathbb{R}$.
If $f(0)=0$, then $y_1=y$, $y_2=\ldots=y_n=0$ implies that $f(\frac{1}{n} y)=\frac{1}{n}f(y)$.
This implies $\frac{1}{n}f(\sum_{i=1}^n y_i)=f(\frac{1}{n}\sum_{i=1}^n y_i)=\frac{1}{n}\sum_{i=1}^n f(y_i)$.
Letting $y_3=\ldots=y_n=0$, we get that $f(y_1+y_2)=f(y_1)+f(y_2)$, which is Cauchy's Functional Equation. Since $f$ is continuous at one point, it's linear, so $f(x)=ax$.
We get $a=a^m$, so the solutions in this case are $f(x)=0$, $f(x)=x$ and $f(x)=-x$ (if $m$ is odd).
If $f(0)\neq 0$, WLOG let $f(0)=1$ (or else replace $f$ by $-f$ if $m$ is odd).
Analogously $f(\frac{1}{n}y)=\frac{f(y)+n-1}{n}$, and $\frac{f(\sum_{i=1}^n y_i)+n-1}{n}=f(\frac{1}{n}\sum_{i=1}^n y_i)=\frac{1}{n}\sum_{i=1}^n f(y_i)$, so that $f(\sum_{i=1}^n y_i)+n-1=\sum_{i=1}^n f(y_i)\Rightarrow g(\sum_{i=1}^n y_i)=\sum_{i=1}^n g(y_i)$ where $g(y)=f(y)-1$.
From this we have that $g$ satisfies Cauchy's functional equation, so that $f(y)=ay+1$. But $ay^m+1=f(y^m)=f(y)^m=(ay+1)^m$, which implies $a=0$ by comparing coefficients. So in this case the solutions are $f(x)=1$ and $f(x)=-1$ (if $m$ is odd).
We conclude that the solutions are $f(x)=0$, $f(x)=x$, $f(x)=1$ and if $m$ is odd $f(x)=-x$ and $f(x)=-1$.