Suppose n is an integer, such that the sum of the digits of n is 2, and $10^{10} \lt n \lt 10^{11} $. The number of different values for n is:
Let me try to list them :
(1) 11000000000
(2) 10100000000
(3) 10010000000
...
(10)10000000001
So I am getting 10 possible values but the answer is 11.What am I missing here ?
EDIT: I was missing 20000000000.