I propose the following lemma and its proof. It is related to row-null and column-null matrices - i.e. matrices whose rows and columns both sum to zero. Could you please give your opinion on the plausibility of the lemma, and the validity of the proof?
Lemma: Let $Z\in\text{GL}(n,\mathbb{R})$ be a general $n\times n$ real matrix, and let $Y\in\mathcal{S}(n,\mathbb{R})$, where $\mathcal{S}(n,\mathbb{R})$ is the space of row-null column-null $n\times n$ real matrices. Then $\text{Tr}(ZY)=0$ for all $Y$ in $\mathcal{S}(n,\mathbb{R})$ if and only if $Z$ has the form $$Z_{ij}=\left(p_{j}-p_{i}\right)+\left(q_{j}+q_{i}\right)$$.
Proof: Consider the space of row-null and column-null matrices
$$\mathcal{S}(n,\mathbb{R})= \left\{ Y_{ij}\in GL(n,\mathbb{R}):\sum_{i}Y_{ij}=0,\sum_{j}Y_{ij}=0 \right\} $$
Its dimension is $$\text{dim}(S(n,\mathbb{R}))=N^{2}-2N+1$$ since the row-nullness and column-nullness are defined by $2N$ equations, only $2N-1$ of which are linearly independent. Consider the following space
$$\mathcal{G}(n,\mathbb{R})=\left\{ Z_{ij}\in GL(n,\mathbb{R}):Z_{ij}=\left(p_{j}-p_{i}\right)+\left(q_{j}+q_{i}\right)\right\}$$
Its dimension is
$$\text{dim}(\mathcal{G}(n,\mathbb{R}))=2N-1$$ where $N-1$ is the contribution from the antisymmetric part and $N$ is from the symmetric part.
Assume $Y\in\mathcal{S}$ and $Z\in\mathcal{G}$, then the Frobenius inner product of two such elements is $$ \text{Tr}(ZY) =\sum_{ij}\left[\left(p_{j}-p_{i}\right)Y_{ji}+\left(q_{j}+q_{i}\right)Y_{ji}\right] $$ $$ =\sum_{j}(q_{j}+p_{j})\sum_{i}Y_{ji}+\sum_{i}(q_{i}-p_{i})\sum_{j}Y_{ji}=0 $$ Since $\text{dim}(\mathcal{G})+\text{dim}(\mathcal{S})=\text{dim}(GL)$ and $\mathcal{G}\perp\mathcal{S}$, then $\mathcal{G}$ and $\mathcal{S}$ must be complementary in $GL$. Therfore, if $Y$ is orthogonal to all the matrices in $\mathcal{S}$, it must lie in $\mathcal{G}$.
PS: How can I get the curly brackets {} to render in latex mode?