Let $L^{\infty}$ denote the set of all essentially bounded functions and suppose that $f \in L^{\infty}$ and $g \in L^{\infty}$. Then the product $fg$ is in $L^{\infty}$. Now the question is: prove or disprove: $\|fg\|_\infty \leq \|f\|_\infty \|g\|_\infty$.
Any hints?