The knight's tour is a sequence of 64 squares on a chess board, where each square is visted once, and each subsequent square can be reached from the previous by a knight's move. Tours can be cyclic, if the last square is a knight's move away from the first, and acyclic otherwise.
There are several symmetries among knight's tours. Both acyclic and cyclic tours have eight reflectional symmetries, and cyclic tours additionally have symmetries arising from starting at any square in the cycle, and from running the sequence backwards.
Is it known how many knight's tours there are, up to all the symmetries?