Prove that $\left \{ 0,1 \right \}^{\mathbb{N}}\sim \left \{ 0,1,2,3 \right \}^{\mathbb{N}}$ and find a direct bijection function.
I got the first part by showing that $\left \{ 0,1 \right \}^{\mathbb{N}} \subseteq \left \{ 0,1,2,3 \right \}^{\mathbb{N}} \subseteq {\mathbb{N}}^{\mathbb{N}}$, which implies that $|\left \{ 0,1 \right \}^{\mathbb{N}}| \leq |\left \{ 0,1,2,3 \right \}^{\mathbb{N}}| \leq |{\mathbb{N}}^{\mathbb{N}}|$ and since $|{\mathbb{N}}^{\mathbb{N}}| = |\left \{ 0,1 \right \}^{\mathbb{N}} | = 2^{\aleph_0} $ and Cantor-Bernstein you get that $\left \{ 0,1 \right \}^{\mathbb{N}}\sim \left \{ 0,1,2,3 \right \}^{\mathbb{N}}$.
But I'm stuck with formulating a bijection function. More generally, what approach do you use when you need a formulate an exact function?