In an example I have worked out for my work, I have constructed a category whose objects are graded $R$-modules (where $R$ is a graded ring), and with morphisms the usual morphisms quotient the following class of morphisms:
$\Sigma=\left\lbrace f\in \hom_{\text{gr}R\text{-mod}}\left(A,B\right) \ | \ \ker\left(f\right)_0\neq 0, \ \mathrm{coker}\left(f\right)_0\neq 0\right\rbrace$
(by quotient I mean simply that this class of morphisms are isomorphisms, thus creating an equivalence relation) I am wondering if this category has a better (more canonical) description, or if I can show it is equivalent to some other interesting category.
Thanks!