How can I construct a CW complex A with $H_0(A) = \mathbb{Z}$, $H_2(A) = \mathbb{Z}/4\mathbb{Z}$, $H_4(A) = \mathbb{Z}\oplus\mathbb{Z}$ and all other homology groups trivial? Any idea?
Thanks!
How can I construct a CW complex A with $H_0(A) = \mathbb{Z}$, $H_2(A) = \mathbb{Z}/4\mathbb{Z}$, $H_4(A) = \mathbb{Z}\oplus\mathbb{Z}$ and all other homology groups trivial? Any idea?
Thanks!