Let $f:[0,1] \rightarrow [0,\infty)$ be a measurable function such that:
$\mu (\{x \in [0,1]: f(x) > t \}) \leq \frac{1}{t(ln(t))^{2}}$
holds for each $t>3$.
Show $f$ is an integrable map.
Let $f:[0,1] \rightarrow [0,\infty)$ be a measurable function such that:
$\mu (\{x \in [0,1]: f(x) > t \}) \leq \frac{1}{t(ln(t))^{2}}$
holds for each $t>3$.
Show $f$ is an integrable map.