The task: $\lim_{x\to\infty} \sqrt{x^2+1} -x $
I've multiplied with the conjugate expression ($\sqrt{x^2+1} +x$), then I get this
$\lim_{x\to\infty} \frac{1}{\sqrt{x^2+1} +x} $
Is this correct so far? And what would be the next step?
The task: $\lim_{x\to\infty} \sqrt{x^2+1} -x $
I've multiplied with the conjugate expression ($\sqrt{x^2+1} +x$), then I get this
$\lim_{x\to\infty} \frac{1}{\sqrt{x^2+1} +x} $
Is this correct so far? And what would be the next step?