
Comprehending Semantic Types in JSON Data with Graph Neural
Networks

Shaung Wei
sw2582@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Michael J. Mior
mmior@mail.rit.edu

Rochester Institute of Technology
Rochester, New York, USA

ABSTRACT
Semantic types are a more powerful and detailed way of describing
data than atomic types such as strings or integers. They establish
connections between columns and concepts from the real world,
providing more nuanced and fine-grained information that can be
useful for tasks such as automated data cleaning, schema matching,
and data discovery. Existing deep learning models trained on large
text corpora have been successful at performing single-column
semantic type prediction for relational data. However, in this work,
we propose an extension of the semantic type prediction problem
to JSON data, labeling the types based on JSON Paths. Similar to
columns in relational data, JSON Path is a query language that
enables the navigation of complex JSON data structures by spec-
ifying the location and content of the elements. We use a graph
neural network to comprehend the structural information within
collections of JSON documents. Our model outperforms a state-of-
the-art existing model in several cases. These results demonstrate
the ability of our model to understand complex JSON data and its
potential usage for JSON-related data processing tasks.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
JSON data, graph neural networks, semantic type detection, deep
learning

1 INTRODUCTION
Detecting the semantic types of columns in a relational table can
be useful for data preparation and information extraction tasks
such as data cleaning and integration. For example, semantic type
detection can help some rule-based automated data cleaning appli-
cations that are dependent on semantic data types [9, 16]. Schema
matching tasks can also narrow down search spaces based on de-
tected semantic types [15]. Furthermore, data discovery tasks can
utilize detected semantic types to find semantically related results
for input queries [3, 4].

Traditional systems only classify table columns into atomic types
such as Boolean, integer, and string. Semantic types are a finer-
grained classification of columns that provide richer information
and a connection to real-world concepts. For example, a column
containing values such as "Chicago", "Detroit" can be described
using the type location rather than string. Prior work has attempted
to predict semantic types using methods such as dictionary lookup
and regular expression matching. In real-world cases, many tables
are dirty with corrupted column names or missing values that these
rule-based approaches do not correctly predict [19].

To solve this problem, a deep learning enabled model, Sher-
lock [8], was proposed to learn the semantic type based on column
values. Sherlock is trained on huge table-based corpora [7]. It first
extracts features from the values in each column and a deep learn-
ing model is trained on these features to perform semantic type
detection. Although Sherlock outperforms traditional approaches,
it is limited to relational data.

In this work, we propose a novel semantic type classification
model for semi-structured JSON data. Unlike relational databases,
JSON data is in the form of key-value pairs and uses a hierarchical
structure. We annotate the semantic type of JSON data with its
hierarchical structure and use a graph neural network to predict the
semantic type with the same set of features extracted by Sherlock.
The proposed model can achieve better accuracy and higher F1
scores than Sherlock on certain semantic types.

2 PROBLEM SETUP
Relational semantic type prediction is a multiclass classification
problem that can be defined as follows. Given the columns 𝑐1, 𝑐2, . . . ,
𝑐𝑚 for a given table as the training dataset, where 𝑐𝑖 is a vector of
column values, their corresponding semantic types 𝑡1, 𝑡2, . . . , 𝑡𝑚 ∈ 𝜏

are considered as target values, where 𝜏 is a set of predefined seman-
tic labels to be considered. We refer to this problem as single-column
prediction where we use all values from each column to predict the
semantic type of the column.

In our work, we extend this problem to include JSON data, which
contains arbitrarily nested structures. To label JSON data, an exam-
ple JSON document shown in Figure 1 could include a user keywith
the following key-value pairs: "user": {"id":9171087, "id_-
str": "9171087", "name": ud83c}. In this instance, the JSON
document yields four distinct key-value pairs. The first key-value
pair consists of the key id and its corresponding value of 9171087.
The second pair includes the key id_str with its corresponding
value also being 9171087. The third key-value pair comprises the
key name with its corresponding value being ud83c. The fourth
pair, has the key user and the value {"id":9171087, "id_str":
"9171087", and "name": ud83c}.

In the context of relational data, the assignment of ground truth
values for supervised semantic type prediction is often derived from
columns, as they are indicative of the underlying meaning of the
data within that column. In the case of JSON data, the semantic type
is established by reference to the corresponding JSON Path[5] of
the key. JSON Path is a query language that enables the navigation
of complex JSON data structures by specifying the element location.
The rationale is that values associated with the same path are likely
to possess similar semantic meanings, and therefore can be grouped
together under a common semantic type. For example, the path

Shaung Wei and Michael J. Mior

user.json
{
 "user": {
 "id": 9171087,
 "id_str": "9171087",
 "name": "ud83c"}
}

Figure 1: Example of JSON Data

$.user.username refers to the "username" key within the top-level
object nested under the key "user".

3 FEATURE SELECTION
In our work, we use the same set of features as Sherlock, which is a
single-column prediction model that takes all values from a single
column as input and outputs the predicted semantic type for the
corresponding column. The extracted feature vectors are used to
train a neural network for the detection of semantic types. In Sher-
lock, a total of 1,587 features are extracted from the column values
across four different dimensions. These dimensions are described
below.

(1) Global statistics. This category is a set of 27 hand-crafted
features, typically some high-level statistical characteristics
of the column. For example, column entropy describes the
uniformity of the distribution of column values. Another
example is the number of values that measures the number
of unique values recorded in the column.

(2) Character-level distributions. This category contains
simple statistical features of character distributions. Specif-
ically, 10 statistical functions, i.e. any, all, mean, variance,
min, max, median, sum, kurtosis, skewness, are applied on
all 96 ASCII-printable characters plus the form feed charac-
ter, resulting in 960 features. For example, the any function
checks if any column value contains a specific character.
all checks if all column values contain a character. Some
other examples of features are the maximum number of
appearances of a character in a single column value and the
median value of appearance of a character for all column
values.

(3) Word embeddings. Sherlock uses a pre-trained GloVe
embedding [14] to characterize the semantic content of col-
umn values. The GloVe model contains a 50-dimensional
embedding for 400,000 English words aggregated from
6,000,000,000 tokens. Similar to word2vec [13], GloVe em-
beddings can be used to measure semantic similarity be-
tweenwords. The advantage of GloVe compared toword2vec
is that it does not rely simply on local information of words,
but it also incorporates global statistics such as word co-
occurrence. By calculating the mean, mode, median, and
variance on the 50-dimensional GloVe feature vector for

all column values, a 200-dimensional feature vector is pro-
duced in this category.

(4) Paragraph vectors. A distributed bag of words version of
the paragraph vector (PV-DBOW), or the doc2vecmodel [12]
is implemented to capture features at the “topic” level of
the column. The doc2vec model forces the model to pre-
dict random words that are sampled from paragraphs in
the output by ignoring context words from the input. The
model is pre-trained in Sherlock using the Gensim library
to extract a paragraph feature that has 400 dimensions.

4 PROPOSED GRAPH MODEL
Raw JSON data is annotated by treating each key-value pair as a
data point. For instance, from the user.json file, four data points
can be extracted as illustrated in Figure 1. For each key-value pair,
the label is determined by annotating the JSON Path to represent
the semantic meaning, while the features are extracted using Sher-
lock from the corresponding values at each path. As an example,
consider the key-value pair "user": {"id":9171087, "id_str":
"9171087", "name": "ud83c"}. Here, the label assigned is user,
and the features are extracted from {"id":9171087, "id_str":
"9171087", "name": "ud83c"}. At this stage, we can proceed
to apply Sherlock and evaluate its performance for semantic type
detection, using it as a baseline result.

The structure of our model is illustrated in Figure 2. Each JSON
file is processed by first obtaining all key-value pairs, as described
in the preceding section. Using the same example as in Figure 1,
we can obtain four key-value pairs. Subsequently, the features for
each key-value pair are computed based on their respective values,
yielding features 𝑓1, 𝑓2, 𝑓3, and 𝑓4.

Following this, four graphs are generated, labeled as "id", "id_str",
"name", and "user". The first three graphs, 𝐺1, 𝐺2, and 𝐺3, each
consist of a single-node, with the node features 𝑓1, 𝑓2, and 𝑓3. The
fourth graph, 𝐺4, is a multi-node graph, with a root node having
node features 𝑓4 and three edges connecting to three other nodes,
each having node features 𝑓1, 𝑓2, and 𝑓3.

Once we obtain the graph representations, we use graph neural
networks (GNNs)[11] to perform the classification task. Graph neu-
ral networks are well-suited for our problem, as JSON documents
inherently possess a tree-like structure that can be represented
as a graph. GNNs excel at capturing complex dependencies and
relationships within graphs by leveraging structural information
encoded in edges and node features. Using GNNs, we can effectively
leverage the hierarchical relationships and dependencies present in
JSON documents, enabling accurate analysis and prediction tasks
such as semantic type prediction or classification. GNNs exploit
the rich structural information of JSON documents, making them a
powerful approach to understanding and extracting insights from
this graph-based representation. In our study, we used the Spek-
tral library[6] to implement our GNN. Specifically, we employed a
two-layer GCN model, where the input graph was first fed into a
GCN layer with 256 hidden units, followed by graph pooling and
a dropout layer. The output was then forwarded to another GCN
layer with 64 hidden units, before being connected to a dense layer
for multi-class classification. To optimize the model, we adopted

Comprehending Semantic Types in JSON Data with Graph Neural Networks

user.json

id

9171087484
42853377

id_str

9171087484
42853377

name

ud83c

user

{"id":91710874844285337
7, "id_str":

917108748442853377,
"name": ud83c}

Pre-preprocessing

Feature
Extraction

Key-value
Pairs

Feature
Vectors

Graph
Generation

Graphs

G1: “id”

f1 f2 f3 f4

G2: “id_str” G3: “name” G4: “user”

Training &
Testing

Graph Neural Network

Figure 2: Proposed model architecture

Adam[10] as our optimizer and used categorical cross-entropy as
our loss function. The learning rate was set to 2 × 10−4.

5 DATASET
Our study uses Twitter data and Meetup data available on push-
shift.io [1], a large-scale archive of social media content. Due to the
immense size of the dataset, we selected a representative subset of
each dataset for our research. Specifically, we extracted all available
data from a specific date, resulting in a total of 30,000 distinct JSON
objects for Twitter data, and 20,000 distinct JSON objects for Meetup
data.

Figure 3 shows an example of the Twitter dataset used in this
study. The example contains labels for a single-node graph, includ-
ing created_at, id, and screen_name. The profile_link_color,
profile_sidebar_border_color, profile_sidebar_fill_color,
and profile_text_color also belong to single-node graphs with
label color. Additionally, the example comprises multi-node graphs
with labels such as bounding_box and user_mentions, which are
also illustrated in the figure. The above-mentioned nodes have a
depth of 1 in the graph, while nodes such as type and coordinate
in this example have a depth of 2. Table 1 presents the number of
examples corresponding to each depth (level of nesting) for our
two datasets.

Depth Number of examples
Twitter Meetup

1 1,205 191,884
2 32,158 304,750
3 74,187 101,930
4 3,907 0
5 124 0

Table 1: Number of examples for each depth

twitter.json
{'created_at': 'Fri Dec 01 07:00:01 +0000 2017',
 'id': 936490049738219520,
 'screen_name': '03161996',
 'profile_link_color': '1DA1F2',
 'profile_sidebar_border_color': 'C0DEED',
 'profile_sidebar_fill_color': 'DDEEF6',
 'profile_text_color': '333333',
 'description': None,
'timestamp_ms': '1512111601658’,
 …
 …
 …
 'bounding_box': {'type': 'Polygon',

 'coordinates': [[[135.398894, 34.594636],
 [135.398894, 34.644607],
 [135.495531, 34.644607],
 [135.495531, 34.594636]]]},
 'attributes': {}},

 'user_mentions': [{'screen_name': 'suminoe42',
 'name': 'ryuki',
 'id': 3505357393,
 'id_str': '3505357393',
 'indices': [3, 13]}],

…
…
… }

Figure 3: Example of Twitter JSON data

All key-value pairs with a null value or a type of Boolean are
ignored since these values are highly repetitive in our dataset and
do not contain useful semantic information. We then annotated
each JSON Path with a class label, as discussed in the previous
section, resulting in a label set comprising 43 distinct classes for
the Twitter dataset and 32 distinct classes for the Meetup dataset.

To prepare the data for use in our model, we processed each JSON
file into a graph structure, resulting in a total of around 110,000
distinct graphs for the Twitter dataset and 600,000 distinct graphs
for the Meetup dataset. Each graph in our dataset is accompanied
by a set of node features, an adjacency matrix, and a class label
encoded in one-hot format. The dataset is partitioned into training,
validation, and test sets in a 7:3:3 ratio.

6 EXPERIMENT METHOD
In our experiment, we initially preprocess the JSON file by ex-
tracting key-value pairs based on their corresponding JSON paths.

Shaung Wei and Michael J. Mior

Figure 4 demonstrates the conversion of a JSON document into
relational tables, where each key-value pair is represented as a sep-
arate column. Subsequently, a feature extraction process is applied
to these values to obtain the feature vectors. This step enables us to
utilize the Sherlock model for classification, allowing us to establish
a baseline performance measure. We then proceed to process the
data into graphs, following the procedures outlined in Figure 2. The
classification task is then performed using a graph neural network
model. We summarize the time spent on each preprocessing step in
Table 2, providing an overview of the time requirements for these
tasks on our two different datasets. The key-value pair extraction
step takes 1,205s and 3,525s for the Twitter and Meetup datasets
respectively, which is the most time-consuming preprocessing step.
The feature extraction and graph processing steps take less time
than the key-value pair extraction. The feature extraction step is
the only preprocessing step required to train the Sherlock model.

Preprocessing steps Twitter Meetup
Key-value pair extraction 1,205s 3,525s

Feature extraction 785s 2,100s
Graph processing 152s 450s

Total time 2,142s 7,075s
Table 2: Time spent on preprocessing steps

7 EXPERIMENT RESULTS

Table 3: Comparison of Sherlock and the proposed model on
Twitter dataset

Sherlock Proposed model
Label F1 score Accuracy F1 score Accuracy

Single-Node screen_-
name

0.92 0.93 0.95 0.93

country_-
code

0.80 1.00 0.92 0.85

timestamp_-
ms

1.00 1.00 0.97 0.96

color 0.99 0.99 0.98 0.99
description 0.75 0.77 0.67 0.60

Multi-Node bounding_-
box

0.83 1.00 1.00 1.00

user_-
men-
tions

0.59 0.41 0.84 0.97

retweet_-
status

0.57 0.48 0.82 0.86

hashtag 0.34 0.23 0.40 0.80
full_-
name

0.00 0.00 0.22 0.97

Average 0.82 0.84 0.85 0.85

Table 3 provides a comprehensive comparison between the per-
formance of Sherlock and the proposed model in terms of the
F1 score and accuracy metrics. The evaluation is conducted for

all semantic classes, which are categorized into single-node and
multi-node based on the number of nodes in the graph. The table
presents some selected examples from each category, including
screen_name, country_code, timestamp_ms, color, and descrip-
tion for single-node, and bounding_box, user_mentions, retweet_-
status, hashtag, and full_name for multi-node. The average per-
formance result is also presented at the bottom of the table.

In the single-node setting, the proposed model outperforms
Sherlock on some labels, for example, with F1 scores of 0.95 for
screen_name, 0.92 for country_code, compared to 0.92 and 0.80,
respectively, for Sherlock. However, Sherlock achieves a perfect F1
score of 1.00 for the timestamp_ms label, while the proposed model
only achieves a score of 0.97. The Sherlock model also exhibits
higher accuracy levels for the semantic types of country_code
and timestamp_ms. Sherlock also performs slightly better for the
description label, with an F1 score of 0.75 compared to 0.67 for
the proposed model. Based on the results, it can be suggested that
the base Sherlock model might exhibit better performance when ap-
plied to single-node scenarios, which may be attributed to the fact
that the Sherlock model utilizes a more complex neural network
architecture compared to our network.

In the multi-node setting, the proposed model achieves a per-
fect F1 score of 1.00 for the bounding_box label, while Sherlock
achieves a score of 0.83. The proposed model also outperforms
Sherlock for the user_mentions and retweet_status labels, with
F1 scores of 0.84 and 0.82 compared to 0.59 and 0.57, respectively.
However, Sherlock achieves a slightly better F1 score of 0.40 for
the hashtag label compared to 0.34 for the proposed model. The
proposed model achieves a higher F1 score of 0.22 for the full_-
name label compared to 0.00 for Sherlock. In terms of accuracy, our
proposed model significantly outperforms Sherlock. Specifically,
for the hashtag semantic type, our model achieves an accuracy of
0.80, while Sherlock only achieves an accuracy of 0.23. Similarly,
for the full_name semantic type, our model achieves an accuracy
of 0.50, while Sherlock fails to classify any instance correctly. These
findings demonstrate that our proposed model is more adept at
predicting complex structures, thus providing greater utility for
practical applications.

Table 4 presents the comparison between Sherlock and our pro-
posed model on the meetup dataset. The JSON files within the
meetup dataset exhibit highly similar structures, resulting in higher
overall prediction accuracy and F1 score. In cases involving multiple
nodes, our model achieves perfect accuracy of 1.00, while Sherlock
performs equally well on classes such as event and category, with F1
scores of 0.99 and 0.97 respectively for group and group_photo. For
single-node classes, both models demonstrate similar performance
levels. The Meetup dataset consists of numerous homogeneous
JSON files, many of which exhibit similar hierarchical structures.
As a result, the base model Sherlock can achieve good performance
in the multi-node setup, indicating that our model does not out-
perform Sherlock on this dataset. The reason could be that the
Meetup dataset exhibits a higher level of homogeneity and has a
less complex hierarchical structure for our model to take advantage
of.

Table 5 shows a comparison between the training time andmodel
size of Sherlock and the proposed model. Our proposed model takes
significantly longer to train but produces a much smaller model. We

Comprehending Semantic Types in JSON Data with Graph Neural Networks

twitter.json
{
 'created_at':
'Fri Dec 01 07:00:01 +0000 2017',
 'id': 936490049738219520,
…
…
'user_mentions':
[{'screen_name': 'suminoe42',
 'name': 'ryuki',
 'id': 3505357393,
 'id_str': '3505357393',
 'indices': [3, 13]}]
…
…
}

create_
at

id user_
mentions

screen_
name

name id id_
str

indices …

'Fri Dec 01
07:00:01
+0000 2017'

9364900
4973821
9520

{'screen_name':
'suminoe42',
'name': 'ryuki',
 'id':
3505357393,
 'id_str':
'3505357393',
 'indices':
 [3, 13]}

suminoe42 ryuki 350535
7393

350535
7393

[3, 13] …

Figure 4: transformation of JSON document to relational table

Table 4: Comparison of Sherlock and the proposed model on
the Meetup dataset

Sherlock Proposed model
Label F1 score Accuracy F1 score Accuracy

Single-Node event_id 0.66 0.64 0.68 0.63
id 0.86 0.85 0.91 0.90

member_-
name

0.95 0.95 0.95 0.94

shortname 0.99 0.99 0.98 1.00
Multi-Node event 1.00 1.00 1.00 1.00

category 1.00 1.00 1.00 1.00
group 0.99 0.97 1.00 1.00
group_-
photo

0.97 0.99 1.00 1.00

Average 0.89 0.89 0.92 0.90

Table 5: Training time and model size comparison

Model Training time Model size
Twitter Meetup

Sherlock 252s 690s 5.9MB
Proposed model 1,230s 3,051s 1.9MB

expect that advances in graph neural network training will apply to
our setting to further reduce the training time [2, 21]. Our proposed
model exhibits a notable reduction in model size in comparison to
Sherlock. This is mainly attributed to the fact that our model incor-
porates a smaller number of neural network layers. Consequently,
this disparity may account for certain suboptimal predictions made
by our model in comparison to Sherlock, particularly in single-node
predictions.

Our proposed model achieves a higher average F1 score com-
pared to Sherlock. These results suggest that our proposed model
has a superior ability to learn structural information from the data.

8 FUTUREWORK
In our ongoing research, we aim to explore alternative subgraph
representations to enhance the prediction of semantic types in our
proposed model. The current subgraphs we utilize do not incor-
porate the parent node and its sibling nodes, thus missing out on
valuable information present in those nodes. Sato [20] is a model
that utilizes neighbor columns and table-level information for se-
mantic prediction; however, it exhibits limited scalability in terms
of training time. To address this limitation, we plan to construct sub-
graphs that include the parent and sibling nodes of the target node.
In addition, we will assign edge weights to the graph, allowing us
to emphasize the importance of the target node for prediction. By
enabling additional edge features within each subgraph, we can
leverage neural networks such as edge-conditioned GCN [17] that
are capable of utilizing edge weight information. Subsequently, we
intend to combine the outputs obtained from different subgraphs
using a transformer [18]. The transformer architecture is suitable
for this purpose because of its ability to capture global dependen-
cies and model the relationships between the outputs of different
subgraphs effectively.

In addition, we plan to extend our experimentation beyond the
current dataset in order to enhance the robustness and generaliz-
ability of our model. Specifically, we will train and test our model on
additional datasets that are representative of real-world scenarios.
Our goal is to evaluate the effectiveness of the model’s predictive
capabilities on JSON structures that it has not yet encountered.
Moreover, we aim to examine the impact of training set size on the
performance of our model, with particular attention to the detec-
tion of less frequent semantic types. By conducting such analyses,
we aim to better understand the limitations and strengths of our
model and further refine it for real-world applications.

9 CONCLUSION
In this paper, we proposed a model for predicting semantic types
in nested JSON data that can be used for various automated data
processing tasks. Existing models either predict for a single set of
values at a time or are limited to non-nested relational data.

Shaung Wei and Michael J. Mior

To address this limitation, we proposed an extension of the se-
mantic type prediction problem to semi-structured JSON data with
types labeled based on JSON Paths. Our proposed model annotates
the semantic type of JSON data with its hierarchical structure and
employs a graph neural network to predict the semantic type using
the same set of features extracted by Sherlock. We demonstrate
several cases where our model outperforms Sherlock, indicating
its ability to comprehend complex JSON data and its potential for
semi-structured data processing tasks.

Our ongoing research focuses on enhancing the prediction of
semantic types in our proposed model through alternative subgraph
representations. By incorporating the parent and sibling nodes into
subgraphs and assigning edge weights, we can capture valuable
information for accurate predictions. Leveraging additional edge
features will further improve our model’s performance. We plan to
validate our approach on diverse datasets, ensuring its robustness
and generalizability to real-world scenarios. Furthermore, we plan
to investigate the impact of the size of the training set on model
performance, especially for detecting less frequent semantic types.

In conclusion, our work contributes to the development of deep
learning models for predicting semantic types in JSON data. Our
proposed model offers a better understanding of complex data and
improved performance compared to Sherlock on semi-structured
data.

REFERENCES
[1] Jason Baumgartner. 2021. Push Shift Dataset. https://files.pushshift.io/
[2] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-

Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.
In Advances in Neural Information Processing Systems, Vol. 33. 14556–14566.

[3] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In
IEEE 34th International Conference on Data Engineering (ICDE). Paris, France,
1001–1012. https://doi.org/10.1109/ICDE.2018.00094

[4] Raul Castro Fernandez, Essam Mansour, Abdulhakim A Qahtan, Ahmed Elma-
garmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and
Nan Tang. 2018. Seeping semantics: Linking datasets using word embeddings for
data discovery. In IEEE 34th International Conference on Data Engineering (ICDE).
Paris, France, 989–1000. https://doi.org/10.1109/ICDE.2018.00093

[5] Jeff Friesen. 2019. Extracting JSON Values with JsonPath. Apress, Berkeley, CA,
299–322. https://doi.org/10.1007/978-1-4842-4330-5_10

[6] Daniele Grattarola and Cesarei Alippi. 2021. Graph Neural Networks in Ten-
sorFlow and Keras with Spektral. IEEE Computational Intelligence Magazine 16
(2021), 99–106. https://doi.org/10.48550/arXiv.2006.12138

[7] Kevin Hu, Neil Gaikwad, Michiel Bakker, Madelon Hulsebos, Emanuel Zgraggen,
César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan, and Çağatay
Demiralp. 2019. Viznet: Towards a large-scale visualization learning and bench-
marking repository. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. Glasgow, Scotland, UK, 1–12. https://doi.org/10.1145/

3290605.3300892
[8] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sherlock: A
deep learning approach to semantic data type detection. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Anchorage, AL, USA, 1500–1508. https://doi.org/10.1145/3292500.3330993

[9] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the 29th SIGCHI Conference on Human Factors in Computing Systems. Vancouver,
BC, Canada, 3363–3372. https://doi.org/10.1145/1978942.1979444

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In 3rd International Conference on Learning Representations, (ICLR).
San Diego, CA, USA. http://arxiv.org/abs/1412.6980

[11] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, (ICLR). http://arxiv.org/abs/1609.02907

[12] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proceedings of the 31st International Conference on Machine
Learning (PMLR), Vol. 32. Bejing, China, 1188–1196. https://doi.org/10.5555/
3044805.3045025

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. In ICLR Workshop Papers.
International Conference on Learning Representations. https://arxiv.org/abs/
1301.3781

[14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar,
1532–1543. https://doi.org/10.3115/v1/D14-1162

[15] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10, 4 (2001), 334–350. https://doi.org/10.
1007/s007780100057

[16] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An in-
teractive data cleaning system. In Proceedings of the 27th International Confer-
ence on Very Large Data Bases (VLDB), Vol. 1. Roma, Italy, 381–390. https:
//doi.org/10.5555/645927.672045

[17] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Hawaii, US, 29–38. http:
//arxiv.org/abs/1704.02901

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, Vol. 30. Long Beach, CA, US. https://dl.acm.org/doi/10.5555/
3295222.3295349

[19] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables on
the Web. In Proceedings of the 37th International Conference on Very Large Data
Bases (VLDB), Vol. 4. Seattle, WA, US, 528–538. https://doi.org/10.14778/2002938.
2002939

[20] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çağatay Demiralp,
andWang-Chiew Tan. 2020. Sato: Contextual semantic type detection in tables. In
Proceedings of the 46th International Conference on Very Large Data Bases (VLDB),
Vol. 13. Tokyo, Japan, 1835–1848. https://doi.org/10.14778/3407790.3407793

[21] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: Efficient
Graph Neural Network Training at Large Scale. In Proceedings of the 48th Inter-
national Conference on Very Large Data Bases (VLDB), Vol. 15. Sydney, Australia,
1228–1242. https://doi.org/10.14778/3514061.3514069

https://files.pushshift.io/
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICDE.2018.00093
https://doi.org/10.1007/978-1-4842-4330-5_10
https://doi.org/10.48550/arXiv.2006.12138
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/1978942.1979444
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
https://doi.org/10.5555/3044805.3045025
https://doi.org/10.5555/3044805.3045025
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.5555/645927.672045
https://doi.org/10.5555/645927.672045
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1704.02901
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.14778/3514061.3514069

	Abstract
	1 Introduction
	2 Problem Setup
	3 Feature Selection
	4 Proposed Graph Model
	5 Dataset
	6 Experiment Method
	7 Experiment Results
	8 Future Work
	9 Conclusion
	References

