
RIT Computer Science • Capstone Report • 2185

Optimizing multiple SQL statements for faster
processing

Shashank Prabhakar
Department of Computer Science

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14586
sxp6288@cs.rit.edu

Abstract—
What started as a contribution towards enhancing the per-

formance of the query optimizer in Apache Calcite [1], which
is an actively growing open-source framework for building
and managing databases, transitioned into optimization of SQL
queries in general. To build an intricate analytic system for
any emerging real-world big data application, complex queries
are needed. These applications demand very high performance
and ultra-practical functionality, which can be is to provide a
high-level analysis of the system. These complex queries will
have a lot of reusable conditional subexpressions. The idea of
reusability can be extended even to big data systems where
querying happens in batches and data being dealt with will in
terabytes and will be continuously growing. These systems are
expected to deliver high performance by processing the queries
and obtain results quickly. The main idea behind optimizing these
queries would be is to how these conditional sub-expressions
can be scrutinized and capitalized upon, which will result in
efficient big data systems with reusability. In this paper, the idea
of reusable conditional sub-expressions is achieved by building
directed acyclic graphs for every sub-expression part of the
query and inter-linked accordingly. An optimizer which takes
in multiple SQL statements as input will provide an efficient
way to enhance the performance of the system to which the SQL
queries are plugged into.

Index Terms—multi-query optimization; SQL;

I. INTRODUCTION

Big data in the real world involves running a large set
of complex queries. These queries will have a common set
of conditions or sub-expressions, which can be reused. The
optimizer present in the database system may or may not
exploit this idea of re-usability. The main idea is to run queries
using conditions separately and combine any reusable results.
The need to find these common sub-expressions increases,
if the querying of a system works in batches. This idea of
optimization can be used for streaming and geospatial queries,
and semi-structured data queries, where the query calls will
be in large and recurring.

The algorithm is based on the idea of representing queries
in the form of a DAG [2], which is explained more in detail
in section III. The problem of optimizing sets of queries arise
when we are dealing with big data analysis. Some of these
queries will have some common subexpressions or conditions;
this problem is referred to as multi-query optimization, which
the paper is dealing with. It can be noted here that common

sub-expressions are present even within a single query and can
be broken down accordingly into reusable sub-queries. The
reusability works on the idea of memoization, where results
of expensive query calls can be stored and the same cached
result can be used when a query with similar conditions is
provided as input.

The results of the optimizer show that the performance is
proportional to the number of sub-expressions plugged in with
the queries, but a performance degrade can be seen when
the queries plugged into the system have no reusable results.
Along with the contribution of providing a system which
optimizes the performance of multiple queries, the paper also
signifies the importance of extracting sub-expressions, which
involve operators and other relevant variables, and how they
can be reused. The system has been tested with a MySQL
system.

II. MOTIVATION

There is always more than one way to fetch relevant results
for any query. Identifying the approach is fully down to the op-
timizer part of the database engine. For the high performance
of the database system, it is good to understand the domain
of the data that the database engineer is dealing with, before
running the queries. Approaches like schema optimization and
indexing go hand in hand. Before starting with the design, it is
also important to know how the database engine runs a query.
In streaming platforms, the database systems are continuously
queried to fetch relevant results.

In a scenario like in the X-Ray feature, which is a refer-
ence tool present in Amazon prime video, provides general
information about the scene. There will be a need to store the
characters present in every new scene and the possibility for
a character to be recurring in multiple scenes is very high.
Repeated calls to the database will be needed if the data is
not cached. This problem can be fixed by memoizing the
previous query results and stored in a directed acyclic graph,
with appropriate linking. This will help in the performance
enhancement when dealing with big data will add up, when
there are tens of thousands of queries to be made to run in
parallel.

Rochester Institute of Technology 1 | P a g e



RIT Computer Science • Capstone Report • 2185

III. DESIGN CONSIDERATIONS

The architecture of the system is a simple graph and the
flowchart of the data is shown in as shown in Figure 3 The
main idea in this project, as mentioned in Section I is to:
• Identify any reusable sub-expressions or conditions if

present.
• Recognize any potential results which can be obtained by

integrating results of queries together which are already
made to run, by building a directed acyclic graph and
storing the results in the intermediary nodes.

The DAG built for a batch of queries will be sharing results,
by integrating the results stored in the nodes accordingly by
proper linkage. Physical properties like sort order are not
considered and are not handled in the implementation of the
optimizer.

The steps follow one after the other. Initially, the queries
which are plugged in, are broken down recursively into sub-
queries having just one condition. Information like table
name(s), operator(s) and condition(s) are extracted and are
stored in the query objects before they are fed into the system
for further processing. The idea here is to reduce the number
of database scans to a large extent, so as to reduce the read
overhead and also save time at the same time, by reusing the
already scanned columns from the database. Also, one more
careful consideration is that the sub-expressions in a multi-
query optimization process cannot always be reused, and the
idea here is not a caching system by storing intermediate data
always on every scan. This approach can be used on a single
large query with a large set of conditional expressions. More
about the approach is discussed in depth in the next section.

IV. APPROACH

Conventional optimizers part of the query processing engine
in database systems, do not take into consideration the idea of
sharing data amongst the conditional sub-expressions part of
the query. The algorithm approach works as follows; Firstly,
parse the input SQL statements and build node objects with re-
spect to each query, and extract the necessary details from the
queries. Following this, connect the nodes (built query objects)
to form a directed acyclic graph, based on the reusability of
the results. The built conditional expression DAG will act as
a parse tree, by identifying the querying order of the queries.
Lastly, Validate the approach, by comparing the results. The
complete approach works on the idea of memoization. An
overview of the optimizer’s algorithm can be seen in Figure 1

To reduce the query load on the database system, once the
queries are fed into the system, the query order is set with the
following criteria:
• Queries fetching bigger results are given higher priority

than others.
• The estimated size of the result is based on the direction

in which the mathematical operators in the conditional
expression represent. For example, consider a table with
100,000 rows and queries having conditional operators
< and > are plugged into the system. The system is

Fig. 1. FlowChart

designed in a way, so as to, by only parsing the operators
and their values, it can prioritize the query order, by
identifying which of the queries when made to run
first, will result in a data which can be integrated, with
the maximum size. If the lesser than operator fetches
the bigger result of the plugged-in queries, it will be
prioritized to run first. Consider an example:

SELECT columns FROM table
WHERE col1 > 200
AND col1 < 1100

The query is first broken down into two sub-queries. If
the size of the table is 1200, the system would identify
to extract sub-expression involving col1 < 1100 first, as
it would have a bigger result data intersection, and thus
runs the sub-query with this condition. A simple for loop
over this result fetching results greater than the condition
will get us the final result.

• Query having the most number of sub-
expressions/conditions will have the highest weight.

Consider a table with COL3 a column from the table to

Rochester Institute of Technology 2 | P a g e



RIT Computer Science • Capstone Report • 2185

queried has 35 rows; and the database system is plugged in
with the following queries:

Q1 = SELECT col1, col2 FROM table
WHERE col3 > 10

Q2 = SELECT col1, col2 FROM table
WHERE col3 < 30

Fig. 2. Result data integration

The idea of re-usability can be understood using the number
line diagram as shown in Figure 2. Once the query order is
set, Q2 is made to run first, as it fetches bigger of the two
results. It can be seen in the figure 2, Q2 result can be split
into Res1′ + Res2′, where Res2′ can be extracted from the
result obtained after querying the database system by running
Q2. Q1 conditions are tested upon Res2 result’s conditions, to
check for if any data can be reusable. If true, a simple for loop
with the conditions present in the subsequent query is made
to run on the Q1 result data and Res2′ is fetched. Let’s call
the data yet to be fetched for Q1 query, Res3′.

To fetch Res3′, a new query is to be made to run, let us
call it Q3. The query Q3 generated from the system will be

SELECT col1, col2 FROM table
WHERE col3 >= 30

The result obtained after running Q3 will be Res3′. Res3′

values are obtained by querying the database for the remaining
data, that is values above the limit of Res2′. This would result
in the retrieval of a smaller set of items and thus reduce
the overhead load of the database query result response. The
result of Q1 is obtained by integrating the results together
accordingly.

Result of Q1 = Res2′+ Res3′

Consider another set of queries,

X = SELECT * FROM table
WHERE col1 = some_value

Y = SELECT * FROM table
WHERE col1 = "same_value_as_X"
AND col2 < 40
OR col1=’some_other_value’
AND col2 < 40

The optimizer will initially identify the query order to be set.
As Y will have multiple conditions and more than the number
in X, Y will have the highest weight and will be processed first.

Fig. 3. Resultant graph built

Query2 will be broken down into four different sub-queries,
as it has four different conditions present.

Y1‘= SELECT * FROM table
WHERE col1 = "same_value_as_X1"

Y2‘= SELECT * FROM table
WHERE col2 < 40

Y3‘= SELECT * FROM table
WHERE col1 = "some_other_value"

Y4‘= SELECT * FROM table
WHERE col2 < 40

The query order of these four sub-queries are set as well
and made to run accordingly. Complex queries involve more
than one or two conditions. The idea of reusability was then
extended to the construction of directed acyclic graphs, where
nodes are accordingly connected based on AND and OR
conditions present in the query. The nodes here would contain
the condition and the table, on which it is being applied.

The first sub-query will initially peek into the graph to check
for the relative table name and conditions that can be reused
before querying the database system. As it is empty currently,
a node with the table name mapped to the condition is stored
with the result fetched from the database system.

Other queries are made to run in the order, the system
would have set initially. It can be observed, sub-query with
the condition col2 < 40, can be directly fetched from the
node have the result for the same.

Edges between the nodes are then set, based on the OR and
AND conditions present in the original query. Nodes having
the result of col1 = value is intersected and col2 < 40 are
joined and the results are intersected to get a new node. This
is followed by the union merge of the results of nodes having
col2 < 40 and col1 = new value. The two new nodes formed
are then linked together to a new node, where the results stored
in the nodes are merged on the union, as shown in the Figure
3.

Consider queries involving multiple tables having joins.
Before considering an example, consider a database having
two tables, City and Person. The person table has 10 million
rows. The head of the tables is as shown in Figure 4.

Rochester Institute of Technology 3 | P a g e



RIT Computer Science • Capstone Report • 2185

Person Table City Table

Fig. 4. Example tables

A = SELECT Person.id, Person.person,
City.city FROM Person
INNER JOIN City
ON Person.cid = City.id
WHERE Person.cid=2
AND Person.id < 10000

B = SELECT * FROM PERSON WHERE cid=2

As query B will be fetching the bigger result of the two
queries, the optimizer reorders the queries and thus query B
is made to run first.

The overall idea is to fetch the values from the table person
having city id to be equal to 2. The graph to be constructed
will have nodes linked to the graph from the respective tables
parsed from the queries. The final result will be a for loop
made to run on the results fetched from query 2.

Thereafter, query A will be split into two sub-queries:

Sub-query A1 = SELECT * FROM cid=2

Sub-query A2 = SELECT * FROM id < 10000

The result of sub-query A1 can be fetched by the already
made to run query B. To obtain the result of Sub-query A2,
the optimizer will identify that the result can be fetched by
running a for loop on the result fetched after querying A1 on
the table. Let this result be called A3.

The optimizer then identifies for the join to work, id with
the necessary condition from the City table should be obtained
and stored in a node A4.

To obtain the final result of query A, a simple intersection
of the result of node A3 and A4 will be done, and can be
visualized in Figure 5

V. COMPARATIVE ANALYSIS

The results of the optimizer’s performance on a MySQL
database is discussed in this section. The performance results
show that the multi-query optimization algorithm works better
than the single query optimization when there is a considerable
amount of sub-expressions involved which can be reused.

The queries were made to run on a system with the
following specs:
• Processor: Intel(R) Xeon(R) Silver 4110 CPU @

2.10GHz
• Number of cores: 16

Fig. 5. Join on multiple tables 2

To obtain the performance of the system, different queries
that were made to run were:
• Queries with no reusable results:

SELECT * FROM Person
WHERE id > 8000000

SELECT * FROM Person
WHERE id < 10000

• Queries involving reusable results:
SELECT * FROM Person
WHERE id > 600000

SELECT * FROM Person
WHERE id < 8000000

• Queries involving reusable results with AND and OR part
of the sub-expressions:

SELECT * FROM Person
WHERE id > 5000
AND id < 15000

SELECT * FROM Person
WHERE id < 6000
OR cid = 2

• Queries number of condition(s), operator(s) and col-
umn(s) > 1:

SELECT * FROM Person
WHERE id < 50
AND cid = 2

SELECT * FROM Person
WHERE id < 40

Rochester Institute of Technology 4 | P a g e



RIT Computer Science • Capstone Report • 2185

AND cid = 1

• Queries having multiple tables:
SELECT Person.id,
Person.person,
City.city FROM Person
INNER JOIN City
ON Person.cid = City.id
WHERE Person.cid=2
AND Person.id < 10000

SELECT * FROM PERSON
WHERE cid=2

Fig. 6. Bar plot of the performance comparison

• Queries with no reusable results: No performance en-
hancement is seen nor expected. As the optimizer pre-
sumes by default that there are sub-expressions that can
be reused and starts breaking down the queries into
sub-queries and builds relevant query objects and graph
data structure, where some amount of processing time is
wasted.

• Queries having reusable results: The optimized version
gives results which work faster by 34 % than the MySQL
response for the tested queries,

• Queries having AND/OR condition: The optimized ver-
sion gives results 10.19 % faster on an average run, with

error rates of 0.14 seconds and 0.16 seconds respectively.
• Queries having more than one condition: The optimizer

gives response 20% faster than the existing MySQL result
response.

• Queries having more than one table and one condition
only: The optimizer fetches results faster by 14.26% than
the existing implementation.

• Queries having more than one table and more than one
condition: The optimizer retrieves results faster than the
existing MySQL response by 17.91%.

VI. FUTURE WORK

Future work involves enhancing the optimizer to support
queries, involving more complex conditional expressions. An-
other add-on can be, the performance of the optimizer should
not change, even when there are no reusable conditions.
Properties like sort order were not taken into consideration.
This is another key factor which is part of the future work.

VII. CONCLUSION

In this paper, a heuristic graph algorithm was designed
for multi-query optimization. The algorithm makes use of
the DAG, where every sub-expression will be a node and
are inter-linked to form the result of the main query. The
implemented optimizer edges out the existing MySQL im-
plementation only when reusable conditions are part of the
sub-expression/condition part of the queries. In conclusion, a
practical groundwork was laid out for multi-query optimization
and can be extended for other database systems.

ACKNOWLEDGMENT

The author would like to thank Dr. Michael Mior for
providing continuous feedback and lending a helping hand in
the entirety of the completion of the project.

REFERENCES

[1] E. Begoli, J. Camacho-Rodrguez, J. Hyde, M. J. Mior, and D. Lemire,
“Apache calcite: A foundational framework for optimized ...” [Online].
Available: https://arxiv.org/pdf/1802.10233.pdf

[2] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efcient and
extensible algorithms for multi query optimization.” [Online]. Available:
https://www.cse.iitb.ac.in/ sudarsha/Pubs-dir/mqo-sigmod00.pdf

Rochester Institute of Technology 5 | P a g e


