
Natural LanguageQuery to MongoDBQuery
Bhavin Oza

Rochester Institute of Technology
Rochester, NY - 14623

bo2115@rit.edu

1 INTRODUCTION
Natural Language Interfaces is an evolving research area, aimed at
learning and contextualizing the natural language processing for
human computer interaction systems. With the advances in natural
language processing (NLP) with machine learning, many significant
systems have been built to understand and process human language
and provide the necessary output in terms of code or database
queries. Few of these systems which are remarkable are based upon
works of the Transformer and its attention mechanism. Our project
works on one such system, where we convert natural language
queries to MongoDB queries.

1.1 Seq2SQL
In the Seq2SQL model[6], the approach adopted is that of sequence-
to-sequence architecture with reinforcement learning. In order to
learn a policy to construct a query that has unordered sections that
are less suited for optimization via cross entropy loss, the model
rewards from in-the-loop query execution across the database. The
model is trained on a large set of natural language questions with
SQL schema and queries, with the techniques combining supervised
and reinforcement learning, where the reinforcement learning part
plays a significant role in improving the accuracy of the SQL query
generation. This sets a new standard demonstrating the effective-
ness of the deep learning networks with the reinforcement learning
technique, contributing to the evolving field of natural language
processing.

1.2 Transformer
A revolutionary architecture for deep learning was introduced for
the sequence to sequence tasks in the ‘Attention is All You Need’
paper by Vaswani et al, addressing and improving on the chal-
lenges in the traditional models like RNNs and CNNs for sequential
processing.[5]. This architecture works on the self attention mech-
anism, consisting of encoder and decoder models for processing
input and output having multiple layers of feed-forward neural
networks and multi-head attention. The self attention mechanism
defines the principle of allowing the model to consider the different
input tokens from the tokenized string, which helps in understand-
ing the dependencies between different tokens irrespective of their
position in the input. The feed-forward networks are part of each
layer, contributing to the non-linearity in the model, whereas the
multi-head attention helps in parallelizing the need to attend to dif-
ferent combinations of representations. Thus this leads in creating
complex natural language processing models, which provide more
accuracy and efficiency.

Based on the attention mechanism defined above, transformer
models were created. These models define natural language process-
ing as a text to text problem, thus allowing a consistent approach for

training across all such tasks. The initial model here Transformer
T5[3] is trained on a large text corpus on unsupervised learning
objectives. Then this model is leveraged for transfer learning. NLP
has seen the rise of transfer learning, which is the process of pre-
training a model on a task with plenty of data and then fine-tuning
it on a particular job. This leads to less training time and more
impressive results, for many tasks of text classification, language
modeling, .etc.

Thus, building on the foundations and techniques mentioned
above from different research projects, our project aims to develop
neural network based NLQ system for MongoDB queries, creat-
ing an analytical tool for users with little to no background in
MongoDB.

2 DATASET
2.1 Introduction
For training the model, we have considered an existing dataset
WikiSQL[4] which has NLQ to SQL queries stored in a large JSON
file. For the purpose of the simplicity of the training and evaluation,
we have considered the simple SQL queries with WHERE clause
and Accumulators with aggregate functions eliminating complex
queries with join statements. Thus, the final dataset with NLQ and
MongoDB queries has 56,050 records.

WikiSQL is a massive dataset that includes over 80,000 hand-
annotated examples of natural language questions along with their
corresponding SQL queries. This dataset has been meticulously
curated, spanning over 24,000 tables derived from Wikipedia arti-
cles. Each question in the dataset is annotated with a SQL query,
making it an invaluable resource for training and evaluating natural
language interfaces for relational databases. The WikiSQL dataset
make it a valuable resource for researchers and developers working
on NLP tasks in database querying, allowing for progress in the
development of more accurate and robust systems for translating
NLQ into SQL.

Since, the original data is in SQL format, tomeet the requirements
of the dataset for our project, we have developed an algorithm for
converting these SQL queries and schemas into their equivalent
MongoDB queries and schema with appropriate data types. The
algorithm focuses on cleaning, preparing, and initializing a dataset
for NLQ to MongoDB queries conversion, which is defined as a
JSON object.

The final structure of a record in the dataset used for training
which is stored as JSON string is as follows:

{
"instruction": {

"schema": {
"collections": {

"collection_name": {

1

Capstone Project Report, 2024

Figure 1: Steps in Data Processing.

"type": "object",
"properties": {

"field_name": {
"type": "field_type"

}
}

}
}

},
"question": "natural language query"

},
"query": "MongoDB query"

}

2.2 Reading and Filtering
Reading the WikiSQL large JSON file containing the SQL compo-
nents and questions, we iterate over each line in the file which is
a JSON object, and parse each of these JSON objects and extract
relevant information, which are SQL schema, NLQ, and SQL query
output for further processing.

2.3 Conversion Of Schema
Weparse the SQL Schema using the SQLParse[1] python framework,
which represents each of the parts of the schema as a token. On
parsing the SQL schema, we extract the table names as Identifier
tokens and the columns in the Parenthesis token.We further process
the Parenthesis token for the column names and its respective data
types which are present as the sub tokens. For each of the SQL data
types of columns we get its respective MongoDB data type, which
is used for constructing the MongoDB schema. The MongoDB
schema is in the form of JSON, where we have the ‘collections’ field
and its value is a JSON of collection names and its fields stored in
the ‘properties’ field, similar to the JSON schema we have for a
MongoDB collection.

Given the following SQL schema:
CREATE TABLE teams (

"School" text,
"Team_Name" text,
“Town" text,
"County" text,

"School_Enrollment" real,
"Football" text

)

we will get the following list of tokens on parsing it using sqlparse:

(1) <token DDL ’CREATE’>
(2) <token Whitespace ’ ’>
(3) <token Keyword ’TABLE’>
(4) <token Whitespace ’ ’>
(5) <token Identifier ’school...’>
(6) <token Whitespace ’ ’>
(7) <token Parenthesis ’(...)’>

The equivalent MongoDB collection schema we have from our
algorithm is as follows:

"teams": {
"type": "object",
"properties": {

"School": {
"type": "string"

},
"TeamName": {

"type": "string"
},
"Town": {

"type": "string"
},
"County": {

"type": "string"
},
"School_Enrollment": {

"type": "double"
},
"Football": {

"type": "string"
}

}
}

We remove all the whitespace tokens. The identifier with table
name is stored in the collection schema for the MongoDB, and we
further process the sub tokens from the Parenthesis token, which
has the column name and types as the Identifier token. Due to the
nature of some of the queries, at times the column name and types
are stored in a single token as IdentifierList, we split these tokens,
and then iterate through each of the tokens in the list to get column
name and its data type. The column name is processed to replace
any spaces with underscore, to make it easy for understanding and
processing. The column data type is then converted to its respective
MongoDB data type. These column names and data types are then
stored in the form of field and type in the MongoDB collection
schema. The final MongoDB schema is then stored in a dictionary
with collection name as key and its properties and fields under its
value. This gives a JSON structure which we will further dump
as a JSON string in the final dataset file. The final schema will be
subfield of the instruction field.

2

Natural LanguageQuery to MongoDBQuery

Figure 2: Schema Conversion SQL to MongoDB.

2.4 Conversion Of Query
For each SQL query, tokenize the query using SQLParse[1] frame-
work in python. Based on the tokens present such as join, aggre-
gate columns, we filter out and extract relevant tokens from the
parsed query. Then we convert the filtered tokens into MongoDB-
compatible queries using a set of rules, by considering only the
selected column, where and comparison tokens from the query.
If the conversion is successful, construct MongoDB-compatible
queries.
For example, given the following query:
SELECT "School" FROM teams WHERE "TeamName" = "trojans"

we will get the following list of tokens on parsing it using sqlparse:
(1) <token SELECT>
(2) <token Whitespace>
(3) <token value = “School”>
(4) <token Whitespace>
(5) <token FROM>
(6) <token Identifier value = “teams”>
(7) <tokenWHERE, value = (WHERE "TeamName" = "trojans")>

On further dividing the WHERE token, we will get the column
name and values as well, for example: "TeamName" and "trojans"
as Identifier tokens.

We iterate through each of them and remove all the whitespace
tokens, and we further process the sub tokens from the WHERE
clause token, which have the Comparison token, along with the
column as identifier and column name as Identifier sub tokens. We
remove the white spaces from the sub tokens as well. The equivalent
MongoDB query we have is as follows:
db.teams.aggregate(
[{

$match:
{ "Team_Name" : "trojans"}

},
{

$project:
{ "School" : 1}

}
])

2.5 Data Initialization and Output
In the output JSON file, we store the clean and transformed dataset
which is used for training themodels. These dataset has instructions
with MongoDB schema and NLQ with its corresponding MongoDB
queries. Each line in the output file represents a JSON object con-
taining the instruction and MongoDB query.

3 METHODOLOGY
3.1 Model Architecture And Tokenization
The choice of model architecture has a significant impact on the
success of a NLP task. The T5 (Text-To-Text Transfer Transformer)
architecture is used here, which is a Transformer model variant.
This architecture, which is well-known for its versatility and effec-
tiveness across a wide range of NLP tasks, is implemented using the
Hugging Face Transformers library. The model is loaded with pre-
trained weights from the "juierror/flan-t5-text2sql-with-schema-v2"
checkpoint[2], which has been fine-tuned for the text-to-SQL task.
Tokenizers are used to ensure effective communication between
the model and the dataset. This tokenizer, also provided by the
Hugging Face Transformers library, converts raw text inputs into
numerical representations that the model can understand. Custom
tokens and are added to the tokenizer to address specific syntax
requirements in MongoDB queries. Additionally, the tokenizer han-
dles padding and truncation, ensuring that input sequences adhere
to a maximum length of 512 tokens allowed by the model.

3.2 Training
In the pursuit of computational prowess, training is carried out
seamlessly, utilizing the computational prowess of CUDA-enabled
GPUs when available and gracefully degrading to CPU in their
absence. A group of hyperparameters—batch size, learning rate,
and epochs; are carefully selected to strike a delicate balance be-
tween model convergence and computational efficiency. The val-
ues for each of the hyperparameters is as follows: Batch Size(1),
Learning Rate(0.0001) and Epochs(2). Each epoch represents a new
opportunity for model refinement, as the entire training dataset is
meticulously traversed. The AdamW optimizer, one of the famous
optimization algorithms, oversees the model parameter optimiza-
tion. At each iteration, the model is delicately fine-tuned, and the
loss is computed using the discerning negative log-likelihood filter.

The training approach begins with importing data from the given
large JSON file comprising of NLQ to MongoDB queries in the
instructions, followed by partitioning the dataset into training and
testing subsets with the train_test_split function. The separation
of train and test allows for the evaluation of model performance
utilizing previously unknown data during testing. The test size,
which is set to 0.2, indicates that 20% of the data is maintained for
testing and the other 80% for training. The random_state argument
is set to 42 for consistency by reproducing the same sequence
of random numbers each time we run the code. It initializes the
random number generator used for data splitting.

Subsequently, the training and testing datasets are processed into
instances of a custom dataset tailored for the specific task at hand.
The next step involves tokenizing the input data using a provided
tokenizer, which is known as tokenization. It is a preprocessing step

3

Capstone Project Report, 2024

in NLP, where text data is converted into numerical tokens suitable
for consumption by machine learning models. The DataLoader
class is used to create iterable batches of data for both training and
testing. Thus, this leads to efficient data loading and processing,
especially when dealing with large datasets that may not fit entirely
into memory.

Within the training loop, the model is put into training mode,
which ensures that layers like dropout and batch normalization
behave differently during training compared to evaluation. The
training loop iterates over multiple epochs, with each epoch com-
prising iterations through batches of data. For each batch, the input
sequences, attention masks, and target sequences are extracted and
transferred to the specified computing device (e.g. GPU) to leverage
hardware acceleration if available.

During the optimization phase, the model’s forward pass is car-
ried out to generate predictions, and the optimizer’s gradients are
reset. The differences between the model’s output and the real data
are captured by calculating the loss by comparing the model’s pre-
dictions with the target sequences. The model’s performance on
the training set of data is shown by this loss value.

Next, backpropagation is used to compute the gradients of the
loss function with respect to the model’s parameters. These gradi-
ents are used by the optimizer to modify the model’s parameters
in a way that minimizes loss and improves performance. Gradient
descent is a crucial training technique for deep learning models, as
it allows for constant parameter adjustments.

3.3 Accuracy Calculation
We use a custom approach to calculate accuracy that differs from
direct string comparison. This is necessary, because there may
be differences in whitespaces between actual and predicted query
strings, resulting in inconsistencies despite the fact that both are
correct. Our approach involves converting actual and predicted
queries into collection names and aggregate pipelines of MongoDB
involving the query stages. Subsequently, we compare these com-
ponents recursively, examining each stage in pipeline within the
list of pipelines represented as JSON dictionaries. We determine
query correctness by recursively comparing keys and values, which
includes nested dictionaries and primitive values. Any discrepancy
marks the predicted query as incorrect, whereas identical compar-
isons mark it correct. This meticulous process ensures accurate
counting of predicted queries, allowing for an accurate assessment
of testing batch accuracy.

4 EVALUATION
We achieved an accuracy rate of 75.18% throughout the model test-
ing phase, indicating excellent performance. This implies that the
model understands and translates user queries quite well, produc-
ing MongoDB queries with a high degree of success. Considering
the variety of query types present in the dataset, we concentrated
on those that were relevant to MongoDB, specifically WHERE
clause-based searches and queries that involved Acummulators.
The distribution of all records and the corresponding accuracy for
each query class are shown in the table below.

Table 1: Accuracy

Simple query Accumulator query
Accuracy Percentage 81% 59%
Total Test Records 8660 2550

Below is an example of the correct prediction of MongoDB query
by model when given a JSON string representing instruction with
schema and question:
Given Instruction as JSON String:
{

"instruction": {
"schema": {

"collections": {
"table1": {

"type": "object",
"properties": {

"event": {
"type": "string"

},
"venue": {

"type": "string"
}

}
}

}
},
"question": "What is the 2022 Fifa Final venue?"

}
}

Correctly Predicted Query:
db.table1.aggregate([

{
"$match": {

"event": "2022 Fifa Final"
}

},
{

"$project": {
"venue": 1

}
}

])

In spite the model’s ability to generate accurate queries based on
its training, several instances of incorrect queries were produced.
These inaccuracies were frequently caused by erroneous queries
with incorrect collection names or field value capitalization. For
example, the expected query
db.table_2661.aggregate(
[{

"$match": {
"date": "2021 March"

}

4

Natural LanguageQuery to MongoDBQuery

}]
)

was incorrectly generated as
db.table_2641.aggregate(
[{

"$match": {
"date": "2021 march"

}
}]
)

Furthermore, discrepancies were discovered during the $match
stage, with produced queries containing different field values than
anticipated. For instance, an expected $match stage of
{

"$match": {
"Segment_D": "Pedal Steel Guitars"

}
}

was actually produced as
{

"$match": {
"Episode": "111"

}
}

Although several aggregate function queries returned the expected
results, some were inaccurate due to incorrect accumulators. For
example, an expected query of
{

"$group": {
"_id": "null",
"avg": {

"$avg": "$2012"
}

}
}

produced an incorrect accumulator as
{

"$group": {
"_id": "null",
"max": {

"$max": "$2012"
}

}
}

5 FINAL REMARKS
We’ve developed a deep neural network that translates questions
into MongoDB queries, using transfer learning on a pre-existing
Transformer model. Our approach builds on MongoDB query struc-
ture to grasp its context within NLQ. Further enhancements in
model accuracy can be achieved through diverse set of query ex-
amples and using larger language models with more parameters,
making it a valuable analytical tool for non-technical MongoDB
users.

REFERENCES
[1] andialbrecht. [n.d.]. SqlParse Library. https://github.com/andialbrecht/sqlparse.
[2] juierror. [n.d.]. Flan-T5 based SQL model. https://huggingface.co/juierror/flan-t5-

text2sql-with-schema.
[3] Colin Raffel et al. 2021. Exploring the Limits of Transfer Learning with a Unified

Text-to-Text Transformer. Journal of Machine Learning Research 22 (2021), 1–25.
https://doi.org/10.5555/1234567891

[4] Salesforce. [n.d.]. WikiSQL Dataset. https://huggingface.co/datasets/wikisql.
[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In
Advances in Neural Information Processing Systems. 5998–6008.

[6] Tao Xu et al. 2017. Seq2SQL: Generating Structured Queries from Natural Lan-
guage using Reinforcement Learning. In Proceedings of the Conference on Neu-
ral Information Processing Systems (NeurIPS). 300–310. https://doi.org/10.5555/
1234567890

5

https://github.com/andialbrecht/sqlparse
https://huggingface.co/juierror/flan-t5-text2sql-with-schema
https://huggingface.co/juierror/flan-t5-text2sql-with-schema
https://doi.org/10.5555/1234567891
https://huggingface.co/datasets/wikisql
https://doi.org/10.5555/1234567890
https://doi.org/10.5555/1234567890

	1 Introduction
	1.1 Seq2SQL
	1.2 Transformer

	2 Dataset
	2.1 Introduction
	2.2 Reading and Filtering
	2.3 Conversion Of Schema
	2.4 Conversion Of Query
	2.5 Data Initialization and Output

	3 Methodology
	3.1 Model Architecture And Tokenization
	3.2 Training
	3.3 Accuracy Calculation

	4 Evaluation
	5 Final Remarks
	References

