
RIT Computer Science Capstone Report 2195

1 | P a g e

Column prediction using Recurrent Neural Networks

Sagar Khanna

Department of Computer Science

Golisano College of Computing and Information Sciences

Rochester Institute of Technology

Rochester, NY 14586

sk6921@cs.rit.edu

Abstract— The recent text generation model using character

embeddings is an efficient method for learning high-quality

distributed vector representation that captures many precise

syntactic and semantic character relationships. In this paper, I

present an extension that can be applied to a distributed

representation of a database column. Using known column

names of a table, we train our model to generate new and

meaningful column names.

I. INTRODUCTION

Tables on the Web, often contain highly valuable data, are
growing at an extremely high fast speed. These "data lakes"
often lack metadata, which makes the structure of stored data
challenging to understand. The language model has shown to
be useful for improving natural language processing tasks.
These include sentence-level tasks such as paraphrasing and
inference, which aim to predict the relationship between tokens
of a sentence.

There are two strategies for applying language
representations: word level and character level. The character
level approach, such as char2vec [2], uses symbolic embedding
of words. Word level approach represents each sequence of a
symbol of arbitrary length with a fixed vector and a distance
metric that calculates the similarity. The word-level approach,
like One-hot encoding, introduces a novel approach of creating
an integer vector of each word in the vocabulary, and then the
similarity is calculated by using a distance metric.

I argue that the current techniques restrict the power of
representation, especially the character level approach. The
major limitation is that the character level approach uses the
context, i.e., the previously seen characters only to predict the
new column names. Character level model does not consider
the randomness of the column in the real world. In the context
of any column in a table, i.e., other column names can be in
any order.

 In this paper, we improve the character-based approach by
proposing Colum2Vec. It uses both character level approach
and word-level approach. Our approach randomly picks a
column name in a table and creates a word embedding for the
current input space of the data. Column2Vec defines a
relationship between how our target column name is related to
other column names. The process of creating random target
columns is called the Encoder step, where we create integer
matrices of all the possible random combinations of a given set
of column names. The Encoder step also removes the context
dependency problem in character-level models as we choose
each column randomly rather than in a specified order. We also

show that the Colum2Vec approach helps us to generate
meaningful column names as the Encoder step helps us to
create relationships between each column, is used to predict the
next character rather than just using the previously seen
character. These encodings help the model to understand the
semantic relationship between the characters and the words
present in the column names.

Finally, the results show that the proposed model Column2Vec
also generates very few non meaningful column names due to
the additional word embedding used during training.12

II. BACKGROUND

Word2Vec [3], GloVe [11], and BERT [10] are the popular

approaches for word embedding. Recently, other methods

introduced that improve the performance of word embedding

by using semantic information among the words. In

Word2Vec, they find the words that appear more frequently

and replace them with a unique token, i.e., It looks at the local

frequency of words occurring together. Finally, the vector for

all the phrases learned as a single word embedding. One of the

features of this method is that all words and phrases are in the

same vector space.

In GloVe, the words projected into a larger vector space where

similar occurring words cluster together. But GloVe also

considers the global statistics (word occurrence). Embedding

of a sentence either at word level or character, the level has

also found use in the domain outside Natural Language

Processing (NLP), such as in graph/network representation

[2,8], including entity resolution and concept modeling.

Character level embedding model [1] using Recurrent Neural

Networks are similar to the goal of this paper. We try to learn

the semantic information of each column name in the database

in a character-based model. One solution is using a character

level encode, which encodes each character to a character

embedding based on the previously embedded characters. The

first step is converting the column names in a table into unique

characters and then generate an embedding in a higher

dimension for each character. Then, we train the model in

which we update the embedding based on the sequence of

characters that follow each other. In this work, for column

names prediction we hypothesize the potential for discovering

embedding for each column name that and then using

aggregation operation to build an embedding for an entire

table that is used to generate plausible names for the new

column and show if there is any pattern associated with them

RIT Computer Science Capstone Report 2195

2 | P a g e

III. DATA COLLECTION AND CLEANING

Data for this project is collected from the web. The major

issue with the data collected are as follows:

• Inconsistency: As wed data lakes consists of million

of tables. There is a lot of inconsistency in naming

convection used among them example, some tables

consider space as a delimiter, some use ‘_’ or other

special character.

Data cleaning is performed after collection of the data. The

steps used for data cleaning are as follows:

• Removing unwanted characters: The data consists

of lot of special character like tabs, new lines so we

run a cleaning process where we replace all this

characters.

• Using consistent tokens: For this project I have

decided to use ‘_’ as a token inside column names

and space as a token that differentiates two column

tokens.

IV. CHARACTER MODEL

The architecture for our character model uses the Recurrent

Neural Network, shown in Figure 1. It consists of a Recurrent

Neural network where at each time step t, an RNN takes the

input vector Xt ∈ Rn and the hidden state ht−1 ∈ Rm and

produces the next hidden state ht by applying the following

recursive operation:

ht = f(Wxt + Uh
t−1 + b)

Here W, U, b are the parameters of the RNN. For each

character in the corpus we encode it using dense one hot

encoding. Dense encoding is used as it faster and feasible to

run model on it. The model consists of the following layers:

• Embedding layer: This layer takes in batch size

length of character encodings and generates an output

vector of size 256.

• Gated Recurrent Unit: Gated recurrent units are a

gating mechanism that takes care of when the hidden

state must be updated or when it should be reset, i.e.,

If the RNN finds a symbol of great importance, it

learns not to update the hidden state. Likewise, the

RNN learns to skip irrelevant temporary importance.

• Dense layer: Dense layer is a regular deep connected

layer which applies the following operation:

This layer also converts the output to the length of

vocab in our corpus so that it can be used in

prediction.

 Figure 5. Model summary of the character model.

Output = activation (dot (input, kernel) + bias)

 Working of the character model:

The following is a step wise description used to create a

character model.

• Data cleaning step: As the data is collected from the

web it has a lot of inconsistencies like similar column

names are represented using different notations

example: item id can be represented as item_id or

item-id. Thus, data cleaning is preformed where the

only allowed special tokens are ‘ ’ and ‘_’. Some

rows have extra spaces which have been stripped off

for consistency.

• Data generation: In this step, the data is loaded into

model using custom dataset generators which take in

batch size as a parameter. This helps in progressive

loading of the data set and not use high memory

during training.

• Data preparation: This step includes creating one

hot vector encoding of each character including ‘’

and ‘_’ as the model should learn when to produce

special characters. To create the encoding vectors, we

first sort the characters present in the corpus and then

generate unique integers to each of the character.

Figure 4. Sample encoded vector for character model

with batch size of 64. Sequence length of 100 and

vocab size of the train data as 41.

RIT Computer Science Capstone Report 2195

3 | P a g e

• Training RNN: To train the model we pass four

parameters to the model:

1. Vocab_Size: This parameter is output

dimension of the vector.

2. Embedding dim: This parameter is the

Embedding layer dimension which maps

the sequence of characters to a output

vector.

3. Batch input: The batch input is the corpus

of characters we are training the model on.

4. Rnn_units: This is the number of rnn units

to be used for training the model.

Figure 7. Sample training of the character model for 10

epochs which shows the time taken and loss at each

epoch.

• Generation Phase: For the generation phase we use

two parameters: Model and start_string. The model

parameter is the fully trained model which can be

used to get the prediction for a given corpus.

The start_string is a sequence of characters which is

converted to a sequence of integer vectors and then

generation is made based on several parameters like:

1. num_generate: This parameter describes

the number of characters to generate for

the current sequence of input characters

2. Temperature: This parameter lets the

model know how random the oput should

be more the temperature higher is the

change of getting random data.

 Figure 1. Character Model

V. COLUMN2VEC MODEL

The architecture of the character model uses Recurrent Neural

Network, shown in Figure 2. It consists of a Recurrent Neural

Network where each time step t, an RNN takes three inputs

input vector Xt ∈ Rn , the hidden state ht−1 ∈ Rm and Mt which

is the embedding vector for each column token. It produces

the next hidden state ht by applying the following recursive

operation:

 ht = f(Wxt + Uh
t−1 + Mt + b)

Here Wht is character embedding of the present character and

Uht-1 is previous hidden state and Mt is the column token

embedding vector and b is the bias. The model for RNN

consists of the following layers:

• Embedding layer 1: This layer takes input of the

batch size which is the current character encoding.

• GRU: This layer is a Gated Recurrent Unit which

takes care of when the hidden layer must be updated

i.e., the RNN thinks the present character is

important or to reset the model states.

• Dense: Dense layer is a regular deep connected layer

which applies the following operation:

 Output = activation (dot (input, kernel) + bias)

• Embedding layer 2: This embedding layer is an

additional embedding vector we add to the RNN

which keeps the column tokens encoding for the

given batch size.

The Column2Vec model uses two different types of

encoding to train the model:

• Column name tokens encoding: The column
names of every table are converted to one hot

RIT Computer Science Capstone Report 2195

4 | P a g e

vectors. These encodings are introduced to learn
the relationship between column names during
training. This helps the model to learn the pattern
in the corpus.

• Character encoding: During the training phase
each character are trained at each time step and the
model is fed the character encoding.

 Working of the Colum2Vec model:

The following is a step wise description used to create a

character model.

• Data cleaning step: As the data is collected from the

web it has a lot of inconsistencies like similar column

names are represented using different notations

example: item id can be represented as item_id or

item-id. Thus, data cleaning is preformed where the

only allowed special tokens are ‘’ and ‘_’. Some rows

have extra spaces which have been stripped off for

consistency.

• Data generation: In this step, I generate two type of

dataset character level and column level. The

character level dataset is same which we used for the

character level model. The column level dataset is

generated row wise for table.

• Data preparation: This step includes creating one

hot vector encoding of each character including ‘’

and ‘_’ as the model should learn when to produce

special characters. This step generates two type of

encoding vectors: Firstly, character level and

Secondly column token level. We then sort and store

each of those created datasets and create one hot

encoding vectors.

Figure 5. Sample column level encoding of the

training dataset with batch size of 64, sequence

length of 100 and vocab size of 38649.

• Training RNN: To train the model we pass four

parameters to the model:

1 Vocab_Size: This parameter is output

dimension of the vector.

2 Embedding dim 1: This parameter is the

Embedding layer dimension which maps

the sequence of characters to a output

vector.

3 Batch input: The batch input is the corpus

of characters we are training the model on.

4 Rnn_units: This is the number of rnn units

to be used for training the model.

5 Embedding layer 2: This layers takes in

the column token level encoding which is

used every time step.

Figure 6. Sample training of the model for 10 epochs which

shows the time taken for each step and loss for each epoch.

• Generation Phase: For the generation phase we use

two parameters: Model and start_string. The model

parameter is the fully trained model which can be

used to get the prediction for a given corpus.

The start_string is a sequence of characters which is

converted to a sequence of integer vectors and then

generation is made based on several parameters like:

1 num_generate: This parameter describes

the number of characters to generate for

the current sequence of input characters

2 Temperature: This parameter lets the

model know how random the output

should be more the temperature higher is

the change of getting random data.

RIT Computer Science Capstone Report 2195

5 | P a g e

 Figure 2. Column2Vec

VI. RESULTS

Character Model:

The evaluation of each model is done by measuring

meaningfulness of the predicted column names.

Randomness Original input Predicted column

names

0.8 Country, zip code,

rooms,

accommodation

aid, tab_id,

activity_id ,

description ,

inidc_agreement

0.7 Country, zip code,

rooms,

accommodation

production_count,

other_subtitle,

image_url

image_width,

created_at,

updated_at

0.3 Country, zip code,

rooms,

accommodation

Rate,

Summary,

Buy,

Folderid,

Deleted,

created_at,

updated_at

0.2 Country, zip code,

rooms,

accommodation

created, modified,

log_ip ,log_date

,log_time

,log_one_id

,created_at

updated_at

The randomness of the model is how randomly it predicts the

next character from the hidden state so that the model does not

overfit.

The results from the column model shows that the model does

not understand the relationship between the column tokens.

Thus, the results as meaningful literals but not meaningful

column names for the input columns.

COLUMN2VEC MODEL

The evaluation of each model is done by measuring

meaningfulness of the predicted column names.

Randomness Original input Predicted column

names

0.8 Country, zip code,

rooms,

accommodation

checkin_date,

handler type,

city, status id

name, description,

username

,advert_id,

 name

0.7 Country, zip code,

rooms,

accommodation

checkin_date ,

id, status id

,created_at

,updated_at id

,action type

,external_id

,created

0.3 Country, zip code,

rooms,

accommodation

checkin_date

,date_created

,updated_at id

,username

,password

, email

0.2 Country, zip code,

rooms,

accommodation

checkin_date,

, realm_id,

, station,

 sort_order

activity, password

id_admin,

_shift_assign_log

,ticketa4

,this_comments

RIT Computer Science Capstone Report 2195

6 | P a g e

The randomness of the model is how randomly it predicts the

next character from the hidden state so that the model does not

overfit.

The results from the column model shows that the model does

not understand the relationship between the column tokens.

Thus, the results as meaningful literals but not meaningful

column names for the input columns.

ACKNOWLEDGMENT

I would like to express my sincere thanks to my capstone

advisor Dr. Michael Mior and Dr. Alexander Ororbia, for

guiding me throughout the project. Their timely feedback and

providing access to the required resources for the project

helped in the completion of this project. I would also like to

thank Dr. Minseok Kwon for giving timely feedback on the

posters and presentations. At last, I would like to thank the

Computer Science department of Rochester Institute of

Technology for giving me access to all the papers of elite

publications for referring, which helped me understanding and

completing the project. R

REFERENCES

[1] Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level

convolutional networks for text classification." In Advances in neural
information processing systems, pp. 649-657. 2015J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73.

[2] Chen, Jiaoyan, Ernesto JimÃľnez-Ruiz, Ian Horrocks, and Charles Sutton.
"Colnet: Embedding the semantics of web tables for column type

prediction." In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 29-36. 2019.

[3] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning
for networks." In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855-864.
2016.

[4] Hochreiter, Sepp, and JÃĳrgen Schmidhuber. "Long short-term memory."
Neural computation 9, no. 8 (1997): 1735-1780.

 [5] Li, Shaohua, Tat-Seng Chua, Jun Zhu, and Chunyan Miao. "Generative
topic embedding: a continuous representation of documents." In
Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 666-675. 2016.

[6] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff
Dean. "Distributed representations of words and phrases and their
compositionality." In Advances in neural information processing
systems, pp. 3111-3119. 2013.

 [7] Moody, Christopher E. "Mixing dirichlet topic models and word
embeddings to make lda2vec." arXiv preprint arXiv:1605.02019 (2016).

[8] Narayanan, Annamalai, Mahinthan Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu Jaiswal. "graph2vec: Learning
distributed representations of graphs." arXiv preprint arXiv:1707.05005
(2017).

 [9] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff
Dean. "Distributed representations of words and phrases and their
compositionality." In Advances in neural information processing
systems, pp. 3111-3119. 2013.

 [10] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
"Bert: Pretraining of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).

 [11] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning.
"Glove: Global vectors for word representation." In Proceedings of the
2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532-1543. 2014.

