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Abstract— The recent text generation model using character 

embeddings is an efficient method for learning high-quality 

distributed vector representation that captures many precise 

syntactic and semantic character relationships. In this paper, I 

present an extension that can be applied to a distributed 

representation of a database column. Using known column 

names of a table, we train our model to generate new and 

meaningful column names. 

I. INTRODUCTION  

Tables on the Web, often contain highly valuable data, are 
growing at an extremely high fast speed. These "data lakes" 
often lack metadata, which makes the structure of stored data 
challenging to understand. The language model has shown to 
be useful for improving natural language processing tasks. 
These include sentence-level tasks such as paraphrasing and 
inference, which aim to predict the relationship between tokens 
of a sentence.  

There are two strategies for applying language 
representations: word level and character level. The character 
level approach, such as char2vec [2], uses symbolic embedding 
of words. Word level approach represents each sequence of a 
symbol of arbitrary length with a fixed vector and a distance 
metric that calculates the similarity. The word-level approach, 
like One-hot encoding, introduces a novel approach of creating 
an integer vector of each word in the vocabulary, and then the 
similarity is calculated by using a distance metric.  

I argue that the current techniques restrict the power of 
representation, especially the character level approach. The 
major limitation is that the character level approach uses the 
context, i.e., the previously seen characters only to predict the 
new column names. Character level model does not consider 
the randomness of the column in the real world. In the context 
of any column in a table, i.e., other column names can be in 
any order. 

 In this paper, we improve the character-based approach by 
proposing Colum2Vec. It uses both character level approach 
and word-level approach. Our approach randomly picks a 
column name in a table and creates a word embedding for the 
current input space of the data. Column2Vec defines a 
relationship between how our target column name is related to 
other column names. The process of creating random target 
columns is called the Encoder step, where we create integer 
matrices of all the possible random combinations of a given set 
of column names. The Encoder step also removes the context 
dependency problem in character-level models as we choose 
each column randomly rather than in a specified order. We also 

show that the Colum2Vec approach helps us to generate 
meaningful column names as the Encoder step helps us to 
create relationships between each column, is used to predict the 
next character rather than just using the previously seen 
character. These encodings help the model to understand the 
semantic relationship between the characters and the words 
present in the column names. 

Finally, the results show that the proposed model Column2Vec 
also generates very few non meaningful column names due to 
the additional word embedding used during training.12 

II. BACKGROUND 

Word2Vec [3], GloVe [11], and BERT [10] are the popular 

approaches for word embedding. Recently, other methods 

introduced that improve the performance of word embedding 

by using semantic information among the words. In 

Word2Vec, they find the words that appear more frequently 

and replace them with a unique token, i.e., It looks at the local 

frequency of words occurring together. Finally, the vector for 

all the phrases learned as a single word embedding. One of the 

features of this method is that all words and phrases are in the 

same vector space. 

In GloVe, the words projected into a larger vector space where 

similar occurring words cluster together. But GloVe also 

considers the global statistics (word occurrence). Embedding 

of a sentence either at word level or character, the level has 

also found use in the domain outside Natural Language 

Processing (NLP), such as in graph/network representation 

[2,8], including entity resolution and concept modeling. 

Character level embedding model [1] using Recurrent Neural 

Networks are similar to the goal of this paper. We try to learn 

the semantic information of each column name in the database 

in a character-based model. One solution is using a character 

level encode, which encodes each character to a character 

embedding based on the previously embedded characters. The 

first step is converting the column names in a table into unique 

characters and then generate an embedding in a higher 

dimension for each character. Then, we train the model in 

which we update the embedding based on the sequence of 

characters that follow each other. In this work, for column 

names prediction we hypothesize the potential for discovering 

embedding for each column name that and then using 

aggregation operation to build an embedding for an entire 

table that is used to generate plausible names for the new 

column and show if there is any pattern associated with them 
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III. DATA COLLECTION AND CLEANING 

Data for this project is collected from the web. The major 

issue with the data collected are as follows: 

• Inconsistency: As wed data lakes consists of million 

of tables. There is a lot of inconsistency in naming 

convection used among them example, some tables 

consider space as a delimiter, some use ‘_’ or other 

special character. 

Data cleaning is performed after collection of the data. The 

steps used for data cleaning are as follows: 

• Removing unwanted characters: The data consists 

of lot of special character like tabs, new lines so we 

run a cleaning process where we replace all this 

characters. 

• Using consistent tokens: For this project I have 

decided to use ‘_’ as a token inside column names 

and space as a token that differentiates two column 

tokens. 

IV. CHARACTER MODEL 

The architecture for our character model uses the Recurrent 

Neural Network, shown in Figure 1. It consists of a Recurrent 

Neural network where at each time step t, an RNN takes the 

input vector Xt ∈ Rn and the hidden state ht−1 ∈ Rm and 

produces the next hidden state ht by applying the following 

recursive operation:  

 

ht = f(Wxt + Uh
t−1 + b) 

 
Here W, U, b are the parameters of the RNN. For each 

character in the corpus we encode it using dense one hot 

encoding. Dense encoding is used as it faster and feasible to 

run model on it. The model consists of the following layers: 

• Embedding layer: This layer takes in batch size 

length of character encodings and generates an output 

vector of size 256. 

• Gated Recurrent Unit: Gated recurrent units are a 

gating mechanism that takes care of when the hidden 

state must be updated or when it should be reset, i.e., 

If the RNN finds a symbol of great importance, it 

learns not to update the hidden state. Likewise, the 

RNN learns to skip irrelevant temporary importance. 

• Dense layer: Dense layer is a regular deep connected 

layer which applies the following operation: 

This layer also converts the output to the length of 

vocab in our corpus so that it can be used in 

prediction. 

 

 
 Figure 5. Model summary of the character model. 

 

Output = activation (dot (input, kernel) + bias) 
  

  

 

 

 Working of the character model: 
 

The following is a step wise description used to create a 

character model. 

• Data cleaning step: As the data is collected from the 

web it has a lot of inconsistencies like similar column 

names are represented using different notations 

example: item id can be represented as item_id or 

item-id. Thus, data cleaning is preformed where the 

only allowed special tokens are ‘ ’ and ‘_’. Some 

rows have extra spaces which have been stripped off 

for consistency. 

• Data generation: In this step, the data is loaded into 

model using custom dataset generators which take in 

batch size as a parameter. This helps in progressive 

loading of the data set and not use high memory 

during training. 

• Data preparation: This step includes creating one 

hot vector encoding of each character including ‘’ 

and ‘_’ as the model should learn when to produce 

special characters. To create the encoding vectors, we 

first sort the characters present in the corpus and then 

generate unique integers to each of the character. 

 

Figure 4. Sample encoded vector for character model 

with batch size of 64. Sequence length of 100 and 

vocab size of the train data as 41.  
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• Training RNN: To train the model we pass four 

parameters to the model: 

1. Vocab_Size: This parameter is output 

dimension of the vector. 

2. Embedding dim: This parameter is the 

Embedding layer dimension which maps 

the sequence of characters to a output 

vector. 

3. Batch input: The batch input is the corpus 

of characters we are training the model on. 

4. Rnn_units: This is the number of rnn units 

to be used for training the model. 

 

 

 

 

 

Figure 7. Sample training of the character model for 10 

epochs which shows the time taken and loss at each 

epoch. 

 

• Generation Phase: For the generation phase we use 

two parameters: Model and start_string. The model 

parameter is the fully trained model which can be 

used to get the prediction for a given corpus.  

The start_string is a sequence of characters which is 

converted to a sequence of integer vectors and then 

generation is made based on several parameters like: 

1. num_generate: This parameter describes 

the number of characters to generate for 

the current sequence of input characters 

2. Temperature: This parameter lets the 

model know how random the oput should 

be more the temperature higher is the 

change of getting random data. 

 

 

 
               Figure 1. Character Model 

 

V. COLUMN2VEC MODEL 

The architecture of the character model uses Recurrent Neural 

Network, shown in Figure 2. It consists of a Recurrent Neural 

Network where each time step t, an RNN takes three inputs 

input vector Xt ∈ Rn , the hidden state ht−1 ∈ Rm and Mt  which 

is the embedding vector for each column token. It produces 

the next hidden state ht by applying the following recursive 

operation: 

 

 ht = f(Wxt + Uh
t−1 + Mt + b) 

 
Here Wht is character embedding of the present character and 

Uht-1 is previous hidden state and Mt is the column token 

embedding vector and b is the bias. The model for RNN 

consists of the following layers: 

• Embedding layer 1: This layer takes input of the 

batch size which is the current character encoding. 

• GRU: This layer is a Gated Recurrent Unit which 

takes care of when the hidden layer must be updated 

i.e., the RNN thinks the present character is 

important or to reset the model states. 

• Dense: Dense layer is a regular deep connected layer 

which applies the following operation: 

 

       Output = activation (dot (input, kernel) + bias) 

 
• Embedding layer 2: This embedding layer is an 

additional embedding vector we add to the RNN 

which keeps the column tokens encoding for the 

given batch size. 

 

 
The Column2Vec model uses two different types of 

encoding to train the model: 

• Column name tokens encoding: The column 
names of every table are converted to one hot 
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vectors. These encodings are introduced to learn 
the relationship between column names during 
training. This helps the model to learn the pattern 
in the corpus. 

• Character encoding: During the training phase 
each character are trained at each time step and the 
model is fed the character encoding. 

 Working of the Colum2Vec model: 

 
The following is a step wise description used to create a 

character model. 

• Data cleaning step: As the data is collected from the 

web it has a lot of inconsistencies like similar column 

names are represented using different notations 

example: item id can be represented as item_id or 

item-id. Thus, data cleaning is preformed where the 

only allowed special tokens are ‘’ and ‘_’. Some rows 

have extra spaces which have been stripped off for 

consistency. 

• Data generation: In this step, I generate two type of 

dataset character level and column level. The 

character level dataset is same which we used for the 

character level model. The column level dataset is 

generated row wise for table. 

• Data preparation: This step includes creating one 

hot vector encoding of each character including ‘’ 

and ‘_’ as the model should learn when to produce 

special characters. This step generates two type of 

encoding vectors: Firstly, character level and 

Secondly column token level. We then sort and store 

each of those created datasets and create one hot 

encoding vectors. 

 

 

Figure 5. Sample column level encoding of the 

training dataset with batch size of 64, sequence 

length of 100 and vocab size of 38649. 

 

• Training RNN: To train the model we pass four 

parameters to the model: 

1 Vocab_Size: This parameter is output 

dimension of the vector. 

2 Embedding dim 1: This parameter is the 

Embedding layer dimension which maps 

the sequence of characters to a output 

vector. 

3 Batch input: The batch input is the corpus 

of characters we are training the model on. 

4 Rnn_units: This is the number of rnn units 

to be used for training the model. 

5 Embedding layer 2: This layers takes in 

the column token level encoding which is 

used every time step. 

 
 

Figure 6. Sample training of the model for 10 epochs which 

shows the time taken for each step and loss for each epoch. 

 

• Generation Phase: For the generation phase we use 

two parameters: Model and start_string. The model 

parameter is the fully trained model which can be 

used to get the prediction for a given corpus.  

The start_string is a sequence of characters which is 

converted to a sequence of integer vectors and then 

generation is made based on several parameters like: 

1 num_generate: This parameter describes 

the number of characters to generate for 

the current sequence of input characters 

2 Temperature: This parameter lets the 

model know how random the output 

should be more the temperature higher is 

the change of getting random data. 
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   Figure 2. Column2Vec  

VI. RESULTS 

Character Model: 

 

The evaluation of each model is done by measuring 

meaningfulness of the predicted column names. 

 

Randomness Original input Predicted column 

names 

0.8 Country, zip code, 

rooms, 

accommodation 

aid, tab_id, 

activity_id , 

description , 

inidc_agreement 

0.7 Country, zip code, 

rooms, 

accommodation 

production_count, 

other_subtitle, 

image_url 

image_width, 

created_at, 

updated_at 

0.3 Country, zip code, 

rooms, 

accommodation 

Rate, 

Summary, 

Buy, 

Folderid, 

Deleted, 

created_at, 

updated_at 

0.2 Country, zip code, 

rooms, 

accommodation 

created, modified, 

log_ip ,log_date 

,log_time 

,log_one_id 

,created_at 

updated_at 

 

The randomness of the model is how randomly it predicts the 

next character from the hidden state so that the model does not 

overfit. 

The results from the column model shows that the model does 

not understand the relationship between the column tokens. 

Thus, the results as meaningful literals but not meaningful 

column names for the input columns. 

 

COLUMN2VEC MODEL 

The evaluation of each model is done by measuring 

meaningfulness of the predicted column names. 

 

Randomness Original input Predicted column 

names 

0.8 Country, zip code, 

rooms, 

accommodation 

checkin_date, 

handler type, 

city, status id 

name, description, 

username 

,advert_id, 

 name 

0.7 Country, zip code, 

rooms, 

accommodation 

checkin_date , 

id, status id 

,created_at 

,updated_at id 

,action type 

,external_id 

,created 

0.3 Country, zip code, 

rooms, 

accommodation 

checkin_date 

,date_created 

,updated_at id 

,username 

,password  

, email 

0.2 Country, zip code, 

rooms, 

accommodation 

checkin_date, 

, realm_id, 

, station, 

 sort_order 

activity, password 

id_admin, 

_shift_assign_log 

,ticketa4 

,this_comments 
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The randomness of the model is how randomly it predicts the 

next character from the hidden state so that the model does not 

overfit. 

The results from the column model shows that the model does 

not understand the relationship between the column tokens. 

Thus, the results as meaningful literals but not meaningful 

column names for the input columns. 
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