
RIT Computer Science • Capstone Report • 20211

Detecting Silent JSON Changes in Dynamic
Programming Languages

Gautam Gadipudi
Department of Computer Science

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14586
gg7148@rit.edu

Abstract—In this capstone project, we implement a static class
in Python3 with static methods to capture details about the
operations - frame metadata - performed on JSON data, log this
frame metadata, and match it against target frame metadata to
discover examples and scenarios of silent JSON errors in Python3
programs.

Index Terms—JSON; Silent errors; Python3

I. INTRODUCTION

JSON (JavaScript Object Notation) is an open standard data
interchange format. JSON has a particular structure that is
easy for humans to read and understand the underlying data
and format because it is usually stored as text. This particular
JSON structure also makes it easy to load data into almost
all languages, perform required operations and dump output
as a JSON. Hence, JSON is considered as a universal data
structure [1].

A JSON file contains one of the JSON datatypes discussed
below:

• object - an unordered key/value pair where value can be
any of these JSON values.

• array - an ordered list one of these JSON values.
• string - a sequence of zero or more Unicode characters

in double quotes. Backslashes can be used to escape
characters. [1]

• number - a JavaScript floating-point value, not an integer.
[2]

• true - boolean true
• false - boolean false
• null - represents intentional absence of any object value.

[3]
Python3 provides the built-in package json that exposes

API to load, dump and do other operations on JSON data.
The method load is used to load JSON from a file or stream.
The method loads is used to load JSON from a string. Both
these methods use the mapping in Table I to convert JSON to
built-in Python3 datatypes.

Since most JSON data does not correspond to a particular
schema, when this data is loaded into a program in some
language and processed, chances of errors (fatal or silent)
either due to type mismatching, value mismatching or even
structure mismatching are concerning. This either breaks the

JSON datatype Python3 datatype

Object dict
Array list
String str

Number int or float
true bool
false bool
null None

TABLE I
CORRESPONDING PYTHON3 DATATYPES AFTER JSON.LOAD()

flow of the program at the point of operation or elsewhere later
in time, or even worse silently processes the data incorrectly
which leads to unexpected behavior by the application /
program.

Good JSON data is the data format expected when imple-
menting a program that processes this data.

Silent JSON errors are not exactly errors, but unexpected
changes to the JSON data that makes the program to silently
process data incorrectly or raise errors elsewhere in the pro-
gram. One example of such silent JSON error is when the
program (assuming a Python3 program) calculates the number
of elements in a JSON array using len() method. The
program expects a JSON array (mapped to list). Due to any
reason, if a JSON string (mapped to str) is passed instead,
the operation of len() is still valid, but produces unwanted
results. See section III for a detailed example explanation.

This paper focuses on understanding and collecting different
scenarios for a program processing JSON data in a dynamic
language (Python3) that results in silent JSON errors. For these
scenarios, the program logs / keeps a track of the type of
operations, location of operations in the codebase and the built-
in datatype on which these operations are executed (see II-C2).
This metadata is collected for a good JSON input and matched
using a comparator with other future JSON input to detect if
that particular JSON input will or will not cause silent JSON
errors for that program.

II. IMPLEMENTATION

A. Overload built-in datatype methods

In order to collect the previous frame metadata or capture
the operations performed on these built-in Python3 datatypes,

Rochester Institute of Technology 1 | P a g e



RIT Computer Science • Capstone Report • 20211

we derive new corresponding datatypes (prefixed with ’my’)
that are inherited from the built-in datatypes. So, these derived
datatypes will have the same functionalities and traits as the
built-in datatypes, but the overloaded methods will make a
function call to the static method - Tracker.track(),
before returning the expected value(s). The functioning of this
method - track() is explained later in the paper.

B. Control flow of the program

Every program / example will follow the below steps in
order to either collect frame metadata or match against target
frame metadata.

Fig. 1. Control flow of a program

1) Parse command line arguments: A program can be run
in either one of the two modes:

• collect - to collect frame metadata for a particular JSON
input data on a program. Requires a JSON data file
(--jsoninputpath or -i) and an output directory
(--outputdirectory or -o) to which the frame
metadata file is to be spitted out to.

• match - to collect frame metadata for a particular
JSON input data, and also match it against a target
frame metadata from a file. Requires a JSON data file
(--jsoninputpath or -i) to be checked, and a target
frame metadata file (--targetfile or -t) against
which the data collected from JSON data file to to be
checked.

2) Initialize tracker: The parameters from the command
line arguments are used as configuration to initialize the
tracker (using Tracker.init()). See II-C1 for details.

3) Load JSON data for a program: We use the native
approach to work with JSON data in the program i.e. use the
json module. json.load() and json.loads() can be
used to decode JSON data from a file or a Python3 string
respectively. Both these methods use the mapping in Table I
to decode JSON data into built-in Python3 datatypes.

4) Convert data in built-in Python3 datatypes to de-
rived datatypes: The data loaded from json.load() or
json.loads() can only be one of dict or list. But,
the values (not keys) in this dict or list can be any of the
Python3 datatypes mentioned in Table I. So, in an iterative
fashion, we convert all values into the derived datatypes - eg.
dict is transformed to myDict, list to myList, int to
myInt, str into myStr and so on. This conversion is done
by passing the value (built-in datatype) to the corresponding
derived datatype’s constructor, that returns the same value, but
of the type - myDatatype.

5) Execute program logic on derived datatypes: We now
execute the program logic, not on the built-in datatypes, but on
the derived datatypes. Tracker.track() will be trigerred
in the overloaded methods to collect frame metadata or match
against target frame metadata.

C. Control flow of the tracker

Whenever Tracker.track() is triggered from an over-
loaded method, we first capture the previous frame metadata
and proceed forward depending on the mode of the tracker as
discussed below.

Fig. 2. Control flow of the tracker

1) Initialize tracker: This is done just once - before execut-
ing the program logic. Refer Fig. 2. We use the configuration
from the command line parameters to initialize the tracker. We
also assign a timestamp which is a unique id for the tracker
and to distinguish the output files when the same program is
run in collect mode multiple times.

If the tracker mode is to be set to ’collect’, we create a
nested directory of the output directory if it does not exists.
The output files (frame metadata) is dumped in this directory.

If the tracker mode is to be set to ’match’, we load the
frame metadata from the target file into runtime variables to
be used when the tracker is triggered.

Rochester Institute of Technology 2 | P a g e



RIT Computer Science • Capstone Report • 20211

2) Capture previous frame metadata: The built-in Python3
module - inspect is used to capture the frame details. The
metadata comprises of the the following fields:

• datatype - name of the derived datatype
• function - name of the overloaded method
• frame id - id of the frame given by the tracker
• previous frame - details about previous frame that trig-

gered the tracker:
– line no - line number
– function - name of function in the program
– file name - name of the file / program
– module name - name of the module
– code context - code statements as a list of string that

triggered the tracker
3) Tracker mode - collect: Encode the frame metadata

mentioned above into json and append to the output file. The
output file is collection of JSON objects stored as a .jsonl
(JSON lines) file.

4) Tracker mode - match: Get the target frame from the
target frame metadata (which was loaded into runtime when
the tracker was initialized) using the current frame_id of
the tracker. We then compare the current frame metadata,
with this target frame. If they are not the same, raise a
FrameMismatchException - meaning that this input data
can cause a silent JSON error to the program due to a
mismatched field in the frame metadata which is logged onto
the console. If they are the same, we continue the execution
of the program until there is a frame mismatch or the program
has reached the end - meaning that there are no silent JSON
errors possible for that data on the particular program.

III. EXAMPLE WALK-THROUGH

Consider a Python3 program given in Fig. 3 of the name
program1.py. The program is intended to get the number of
elements in the array some_list.

Fig. 3. A Python3 program - program1.py

The program logic lies in the main() method which takes
the JSON data decoded into derived datatypes as a parameter.

The init() method takes the command line arguments
as a parameter to initialize the tracker, load JSON data from
a file into built-in Python3 datatypes and then convert these
datatypes into the derived ones (that have methods overloaded
with call to the tracker).

A. Case: collect frame metadata from good data
Consider a JSON data file in Fig. 4 of the name good.json.

This JSON data is known to be good - meaning it does not
cause neither any regular errors and exceptions nor silent
JSON errors.

Fig. 4. Good JSON data input - good.json

We collect frame metadata into an output directory using
the collect command.

The output or collected frame metadata is shown in Fig. 5.
See II-C2 for understanding the fields captured.

Fig. 5. Frame metadata collected from input good.json - good-
20211122T152114EST.jsonl

B. Case: match frame metadata for bad data
Consider a JSON data file in Fig. 6 of the name bad.json.

We intend to run the program logic using this data, but we
also want to check if this data raises any silent JSON errors.

Fig. 6. Bad JSON data input - bad.json

We use the match command to collect frame metadata from
this JSON data and match it against target frame metadata -
output from Fig. 5.

Rochester Institute of Technology 3 | P a g e



RIT Computer Science • Capstone Report • 20211

The match command raises a
FrameMismatchException with the following message
logged onto the console as shown in Fig. 7 below.

Fig. 7. Console output on running the match command using bad.json as
JSON data input and good-20211122T152114EST.jsonl as the target file

Without the tracker, this particular JSON data - bad.json
would silently execute program logic without any errors. This
is a big concern in a bigger codebase where this would result
in incorrect data processing or raise errors elsewhere in the
codebase.

If we were to match against a good data, it would execute
program logic as if there was no tracker.

IV. SOURCE CODE

Code, tests, examples and scenarios can be tried
by following the README at the remote repository:
https://github.com/GautamGadipudi/tracky.

V. RESULTS

Table II shows valid Python3 operations on JSON data when
loaded using json.load() or json.loads(). Similarly,
Table III shows valid Python3 binary operations (requires two
operands of same datatype) on JSON data.

In both the tables, the 3’s along a row (operation) means
that they are susceptible to silent JSON errors when there is
a datatype mismatch. The 7 means that the operation is not
possible, and will raise a runtime exception at the point of
evaluation of that operation.

All the silent JSON errors captured at this time are due to
datatype mismatch i.e. target frame metadata was expecting a
different datatype.

Number String Array Boolean Object

+ 3 7 7 3 7
− 3 7 7 3 7
not 3 3 3 3 3
len() 7 3 3 7 3

iter() or in 7 3 3 7 3
clear() 7 7 3 7 3

TABLE II
VALID UNARY OPERATIONS ON JSON DATA IN PYTHON3

Number String Array Boolean Object

+ 3 3 3 3 3
− 3 7 7 3 7
∗ 3 7 7 3 7
/ 3 7 7 3 7
% 3 7 7 3 7

== (is) 3 3 3 3 3
== (is) 3 3 3 3 3

! = (is not) 3 3 3 3 3
> 3 3 3 3 7
< 3 3 3 3 7
<= 3 3 3 3 7
>= 3 3 3 3 7

TABLE III
VALID BINARY OPERATIONS ON JSON DATA IN PYTHON3

Using Table II, we collected 16 silent JSON errors that were
all as a result of datatype mismatch. They are shown in Table
IV.

Overloaded method Expected Got

len()

myList myStr
myList myDict
myDict myList
myDict myStr
myStr myList
myStr myDict

iter()

myList myStr
myList myDict
myDict myList
myDict myStr
myStr myList
myStr myDict

clear() myList myDict
myDict myList

TABLE IV
FRAMEMISMATCHERROR - SILENT JSON ERRORS - DUE TO DATATYPE

MISMATCH

VI. FUTURE WORK

The implementation in section II falls short of correctly
detecting silent JSON errors when the overloaded methods
are called from the scope of a loop (for) or a condition
(if, else and elif). Since, the flow of the execution of a
program involving loops and conditions is dynamic, we cannot
guarantee that frame metadata collected for one good input can
be used as target frame metadata to match / detect silent JSON
errors.

One solution or work around to detect silent JSON errors
from a program involving dynamic loops is to log the frame

Rochester Institute of Technology 4 | P a g e



RIT Computer Science • Capstone Report • 20211

metadata only once (first iteration) per loop. This solution still
has an edge case - when the loop is iterated zero times - that
needs to be handled.

VII. CONCLUSION

In this project, we implement a way of collecting details
(frame metadata) of operations performed on JSON data in
Python3. We use this frame metadata to match against other
data on the same Python3 program, to detect any silent JSON
errors. We then use this implementation to discover scenarios
and examples that result in silent JSON errors. Table IV
accounts for only a fraction of all the silent JSON errors
possible in the real world. But, our implementation of the
tracker can be used to discover other silent JSON changes in
almost any Python3 program by importing the Tracker into
the program and initializing it appropriately like in Fig. 3.

ACKNOWLEDGMENT

The author would like to thank his advisor - Dr. Michael
Mior - for the opportunity to work on this project and
providing help and ideas in implementing this project. The
author would also like to thank Dr. Matthew Fluet for his
guidance on reading / writing technical papers and smartly
organizing milestones and presentations with prompt feedback.

REFERENCES

[1] “Introducing json.” [Online]. Available: https://www.json.org/json-en.html
[2] “Number - javascript: Mdn.” [On-

line]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/GlobalObjects/Number

[3] “Null - javascript: Mdn.” [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/GlobalObjects/null

Rochester Institute of Technology 5 | P a g e


