
RIT Computer Science • Capstone Report • 2228

Minimization Of Large JSON Input For Efficient
Debugging

Koteswara Rao Bade
Department of Computer Science

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY 14623
kb5608@cs.rit.edu

Abstract—In this project, we present a novel approach to
simplify the debugging process for developers working with
large JSON lines data. Our solution involves the creation of a
program that iteratively reduces the size of the JSON lines file
by removing the JSON objects which are not responsible for
the error, providing developers with a more manageable subset
of the data. By progressively minimizing the input, we aim to
improve the efficiency and effectiveness of debugging procedures
significantly, ultimately streamlining the development workflow.

I. INTRODUCTION

Debugging errors in large JSON lines data poses signifi-
cant challenges for developers, often leading to lengthy and
error-prone manual debugging processes. In response to this
problem, our project focuses on developing a program that
systematically minimizes input data, making it easier for
developers to work with smaller subsets during the debugging
phase. By dividing the input into halves, running the program
on each subset, and evaluating the occurrence of errors,
our approach progressively reduces the data to its smallest
possible subset while retaining its integrity. This reduction
process saves valuable developer time, facilitates quicker issue
identification, and enhances the overall debugging experience.
Through this report, we present our solution’s architecture,
implementation, and results, demonstrating its effectiveness in
simplifying debugging workflows for developers dealing with
large JSON lines data.

II. BACKGROUND

JSON (JavaScript Object Notation) has become a widely
adopted data interchange format in modern software develop-
ment due to its simplicity, ease of use, and human-readable
structure. It allows for structured data representation in key-
value pairs, making it ideal for data exchange between applica-
tions and services. As data processing requirements continue to
grow, so do the volume and complexity of JSON data, leading
to the emergence of challenges in handling large datasets
efficiently.

One of the specific challenges developers face is debugging
errors in extensive JSON data, especially when the data is
stored in JSON Lines (JSONL) format. JSON Lines extends
the JSON format, where each line in a file represents a stan-
dalone JSON object. JSONL is advantageous for processing

large datasets and streaming scenarios, allowing individual
JSON objects to be read and processed independently.

Manual debugging of extensive JSON Lines data is time-
consuming and prone to errors, especially when identifying
the root cause of an issue within the data. To address this
challenge and streamline the debugging process, we proposed
a novel approach involving the development of a program that
systematically reduces the size of the JSONL file.

The motivation behind this project lies in providing de-
velopers with a more manageable subset of the JSON Lines
data, enabling them to focus on smaller portions of the input
during the debugging phase. By iteratively dividing the input
data, running the program on each subset, and evaluating
errors, the reduction process aims to identify and present the
smallest possible subset of the data that still exhibits the same
issues. This reduced input allows developers to concentrate
their efforts on a smaller, more focused dataset, significantly
improving the efficiency and effectiveness of the debugging
workflow.

Through this project, we aim to develop an automated
solution that simplifies the debugging process for developers
working with extensive JSON Lines data. The subsequent
sections of this report will elaborate on the architecture and
implementation, showcasing its effectiveness in reducing the
complexity of debugging tasks and facilitating more stream-
lined development workflows.

III. ARCHITECTURE AND IMPLEMENTATION

Fig. 1. Program Architecture

Initial Input:
In the context of our discussion, we will be focusing

on understanding how the reduction program operates, and
to illustrate this process, we will be using the specific
input data depicted in figure 2. This example serves as a
practical demonstration to help you grasp the functioning of

Rochester Institute of Technology Page 1



RIT Computer Science • Capstone Report • 2228

Fig. 2. Initial input

the reduction program more effectively. By analyzing this
particular input and observing the outcomes of the reduction
process, we aim to provide a clear and tangible explanation
of the program’s behavior and its impact on the data.

Example Program:

Fig. 3. Program example

The program shown in figure 3 will help us understand how
things work. We’ll use this program to explain the process that
uses the data from figure 2. By looking at how the program
interacts with the input from figure 2, we can see how the
program carries out its tasks. This will give us a clear picture
of how everything fits together and how the program handles
the given data.

The upcoming sections will demonstrate the step-by-step
functioning of the program, as illustrated in figure 1. We will
utilize the example input from figure 2 and refer to the sample
program in figure 3 to showcase each stage of the program’s
operation.

A. Reducing the number of JSONs in the input

In this step, the primary objective is to reduce the number
of JSON objects in the input JSON lines file. The process is
carried out iteratively, starting with the initial input, divided
into two halves. The program runs the given program on each
half separately and checks for any errors that might arise
during the execution. Should an error be encountered in one
of the halves, it signifies that the error likely originates from
the corresponding section of the input data. Consequently, the
program proceeds with the half that produced the error as the
new input for the subsequent iteration, aiming to narrow down
the problematic area further.

On the other hand, if no errors are detected in either of
the halves, the program concludes that the entire input data
does not contain the error. In this case, the program reshuffles
the input data, seeking to expose different combinations and
possible sources of the error. Throughout this iterative process,

the number of JSON objects in the input is progressively
reduced, and the program dynamically adapts the input data
to identify the smallest subset that exhibits the error. This
reduction process effectively narrows down the scope of the
debugging task, providing developers with a more focused and
manageable dataset to analyze.

The figure 4 illustrates the resulting reduced input obtained
from this step, which subsequently becomes the input for the
subsequent stages of the program.

Fig. 4. Reduced input after step 1

B. Removing unwanted keys from the input

In this step of the project, the focus is on removing
unwanted keys from the input data in an iterative manner. The
program successively eliminates keys from the input and tests
the modified data against the target program. Should an error
arise during this process, it signifies that the removed key is
not responsible for the error, leading the program to deduce
that the key can be safely eliminated from all JSON objects.

As an illustrative example, let us consider the key ”name”
unused within the program. Given this insight, the program
removes the ”name” key from all JSON objects in the input
data. Post the key removal operation; the resulting input data
will be updated to exclude the ”name” key throughout the
entire dataset. In addition to the ”name” key, the ”storewise”
key is also not utilized in the program. Consequently, the
”storewise” key will also be eliminated. By systematically
removing irrelevant keys from the input data, this step effec-
tively streamlines the dataset and narrows down the potential
sources of errors. This reduction process plays a pivotal role
in enhancing the debugging process by providing developers
with a more concise and focused dataset, facilitating the
identification of genuine issues, and eliminating unnecessary
distractions.

The figure 5 shows the resulting reduced input obtained
from this step, serves as the foundation for further refinement
and reduction in subsequent phases of the program.

Fig. 5. Reduced input after step 2

C. Removing unwanted elements from the array type keys

In this project’s final step, the program aims to eliminate
unwanted elements from keys of the type array in the input
data. The program reduces the elements by half each iteration
by employing an iterative approach similar to step 1. By
systematically evaluating the execution results, the program
identifies the specific elements responsible for the error.

In the provided example, the string value ”14” [representing
the price of fruits in the south region] is identified as one

Rochester Institute of Technology Page 2



RIT Computer Science • Capstone Report • 2228

of the elements causing the error. Based on this insight, the
program removes these unwanted elements while retaining the
relevant ones. As a result, the input data is updated to exclude
unnecessary elements, thereby refining the dataset for more
efficient debugging. The output of this step serves as the basis
for further optimization and fine-tuning in subsequent phases
of the program.

The ultimate outcome, presented in Figure 6, displays the
result achieved at the concluding stage.

Fig. 6. Reduced input after step 3

The resulting reduced input is notably more compact than
the original input, featuring fewer keys. This outcome substan-
tially simplifies the manual inspection process for developers,
who can now efficiently locate the specific JSONs and keys
contributing to the error. Although the presented example may
not encompass an extensive set of original JSON lines, it
serves as an illustrative demonstration. Consider the scenario
where the input involves many JSONs, each containing many
keys. Even under these circumstances, the ultimate output
remains consistent – a concise and focused representation
streamlining the debugging effort. Developers grappling with
vast datasets can benefit from a concise overview highlighting
the key elements contributing to the error.

IV. RELATED WORK

This section explores existing research that closely aligns
with the objectives and scope of our project. The following
research papers have been selected due to their relevance to
the key themes and concepts addressed in our work: Research
paper by Leitner et al.’s [1] work focuses on addressing
the challenge of efficient unit test case minimization. The
paper presents innovative techniques for minimizing unit test
cases while retaining their effectiveness in identifying software
defects. By analyzing their approach to optimize the test suite
and reduce redundancy, we gain insights into strategies that
enhance testing efficiency without compromising coverage.
The survey by Shin Yoo and Mark Harman [2] offers a
comprehensive overview of regression testing minimization,
selection, and prioritization techniques. The paper delves into
the methodologies used to optimize regression testing pro-
cesses, emphasizing the importance of identifying high-impact
test cases while minimizing redundant executions. By studying
the survey’s findings, we gain a broader understanding of
strategies that enhance regression testing efficiency in soft-
ware development. Yong Lei and J. H. Andrews explore the
minimization of randomized unit test cases in their research
[3]. The paper investigates techniques for reducing the number
of generated random test cases while maintaining adequate
test coverage. By delving into their approach to improve the
efficiency of randomized testing, we gather insights that can

enhance our understanding of minimizing test cases within
randomized testing scenarios.

While the previously mentioned research primarily focuses
on reducing the number of unit test cases, there is a notable
gap concerning the consideration of input data size. This paper
addresses this gap by emphasizing the input data aspect more
than solely concentrating on the number of unit test cases.
This nuanced perspective proves particularly beneficial for
developers engaged with substantial data sets. In scenarios
where issues arise within the input data, pinpointing the exact
source of failure can be an intricate challenge. As such, this
paper offers a comprehensive approach that provides essential
insights into managing extensive and potentially complex data.

V. CONCLUSION

In this project, we have successfully developed an in-
novative approach to streamline the debugging process for
developers working with large JSON lines (JSONL) data. Our
program systematically reduces the size and number of JSON
objects in the input data, providing developers with more
manageable subsets for efficient debugging. The results of our
approach have demonstrated its effectiveness in simplifying
the identification and resolution of issues within large JSONL
datasets. By providing developers with more focused datasets,
our program reduces the time and effort required for manual
debugging and enables a more systematic and reliable debug-
ging process.

Throughout the project, we have analyzed various real-
world scenarios and datasets, showcasing the adaptability and
robustness of our approach in handling diverse use cases.
Our implementation has shown promising results, successfully
reducing the debugging complexity and improving the overall
development workflow.

In conclusion, our project presents a valuable contribution
to the development community by offering a practical and
effective solution for handling large JSONL data and simpli-
fying the debugging process. As the volume and complexity
of data continue to grow, our approach offers a promising way
to tackle the challenges associated with debugging and data
analysis in modern software development environments.

VI. FUTURE WORK

The project opens up several promising avenues for further
exploration and enhancement. One noteworthy direction in-
volves refining the program’s subset selection process by lever-
aging intelligent algorithms. By strategically choosing subsets
for evaluation, the reduction process could be optimized to a
significant degree. Incorporating statistical or machine learning
techniques could empower the program to dynamically select
subsets with a higher likelihood of containing errors. This
intelligent approach would streamline the reduction process
and provide developers with more focused and informative
subsets for effective debugging. Consequently, this could lead
to accelerated error identification and resolution, ultimately
improving the overall efficiency of the debugging process.

Rochester Institute of Technology Page 3



RIT Computer Science • Capstone Report • 2228

In addition, there is a compelling opportunity to enhance
the program’s performance by applying advanced optimization
techniques. One such avenue is the implementation of parallel
processing and memory optimization strategies. By harnessing
the power of parallel computing, the program could efficiently
distribute computational tasks, substantially reducing process-
ing time for large JSON lines files. Furthermore, memory opti-
mization techniques could be employed to manage and utilize
system resources more efficiently, preventing memory-related
bottlenecks and ensuring smoother program execution. By
incorporating these performance optimization techniques, the
program’s scalability could be significantly enhanced, enabling
it to handle more extensive datasets without compromising
efficiency. This scalability improvement would cater to the
needs of developers who regularly work with substantial data
files, offering them a tool that remains effective and responsive
even when dealing with large volumes of information.

ACKNOWLEDGMENT

I extend my heartfelt gratitude to Dr. Michael Mior, my
dedicated capstone advisor, for his invaluable guidance, un-
wavering support, and insightful mentorship throughout the
duration of this project. My sincere thanks extend to my
peers and colleagues who contributed to fruitful discussions
and provided valuable insights that enriched the development
and refinement of this project. Furthermore, I am grateful
to my family and friends for their unwavering support, un-
derstanding, and motivation throughout this endeavor. Their
encouragement has been a constant source of inspiration.

REFERENCES

[1] A. Leitner and M. Oriol. (2007, Nov.) Effi-
cient unit test case minimization. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/1321631.1321698

[2] S. Yoo and M. Harman. (2012, Mar.) Regression testing minimization,
selection and prioritisation: A survey. software testing, verification, and
reliability. [Online]. Available: https://doi.org/10.1002/stvr.430

[3] Y. Lei and J. H. Andrews. (2005, Nov.) Minimiza-
tion of randomized unit test cases. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1544741

Rochester Institute of Technology Page 4


