
RIT Computer Science • Capstone Report • 20171

Empirical Analysis of JSON Schema Use
Ammar Alsulami

Department of Computer Science
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14586

afa7686@cs.rit.edu

Abstract—Coming from the wide adoption of JSON schema,
this paper is devoted to investigating the use and characteristics
of this technology. We collected, prepared, and analyzed 47,610
json files to draw meaningful conclusions for schema developers.
Even with polishing of schema versions, version four is the most
commonly used among users and string types outnumbers other
types in terms of quantity. The majority of errors while validating
schemas is due to using new features while refereeing to an older
definition of the schema.

Index Terms—JSON; Schema; Analysis

I. INTRODUCTION

Java Script Object Notation (JSON) is a data exchanging
format that plays a viral rule in developing and reshaping data
exchanging methods. It was first introduced by [1], since then
it is rapidly spreed to reach out and cover other applications
such as storing data, sending data over the web (REST API)
due to the flexibility and ease of use that JSON technology
excel in. It is a key-value pairs document where each key
represents a property name and all keys in JSON documents
must be unique.

{"university": "RIT", "city": "Rochester"}

Listing 1: JSON example

The flexibility and expressive power of JSON is inherited by
the nature of key-value pairs data structure where a JSON file
user have the ability of structuring nested JSON document as
they require. In that case the nested JSON document is called
an object. Beside supporting complex data structures, JSON
supports basic data types such as Integer, Numbers, Boolean,
and Strings. With this flexibility and the potential complexity
JSON documents has become one of the most successful data
exchanging formats.

With the ever-increasing popularity of JSON as a data
exchanging format, people start to worry about the validity and
conformity of such data as well as the way of expressing the
structure of their data to the corresponding users. One popular
solution is to provide an example of the needed data and write
the JSON document Validator for each application. However,
that was not feasible in the scalalbitiy and the modularity
aspects where each and any update to JSON schema structure
requires an update to the validator itself, keeping in mind
that the problem of expressing the data remains unsolved. The
first ever attempt to address and formulate a solution to this

problem was done by [2] that is called ”Foundation of JSON
Schema”. JSON schema definition [3] is a set of rules and
methods that defines the syntax and semantic of JSON schema
in such a way that maintains JSON’s flexibility and expressive
power. JSON schema is also a valid JSON document, yet it
is mainly used in validating JSON documents that written
against. For example if an API ”A” needs to validate a request
from clinet ”B” then API ”A” should define a schema using the
proposed JSON schema definition to validate documents that
was received from client ”B”. The proposed schema definition
has been adopted by large number of applications, as of July
3rd 2021, there are more than 87,000 JSON schema in GitHub
that use the proposed definition and the newly born JSON
schema has reached to mature state by releasing more than
nine drafts of the definition over the recent few years.

{
"$schema":"json-schema.org",
"type":"object",
"properties":{

"city":{
"type" :"string"

},
"university":{

"type" :"string"

},

},
"required":["city", "university"]

}

Listing 2: JSON schema example for listing 1

With the existence of a formal definition of JSON schema,
the need of a real implementation of that definition had
never been that vital before. There were several proposed
programming solutions in different programming languages,
but the one that excel above them is AJV validator[4]. It
is the fastest among all JSON schema validator with clear
documentation and high level of modularity. AJV validator
provides a feature called strict mode from which the tool user
have the option to manipulate the schema validation by adding
or skipping steps from the validation process. By default, AJV

Rochester Institute of Technology 1 | P a g e

RIT Computer Science • Capstone Report • 20171

validator validate the entire schema starting from the structure
of the schema until the user-written regular expressions, but
with the help of the strict mode options the user can skip
validating all these options including the validity of the schema
itself not just what is inside the schema. Also, it allows
schema users to add keywords that must be ignored during
the validation process. These features collectively made AJV
the optimal validator for our experiment.

The abundance of JSON schema requires an empirical
analysis to investigate the efficacy of JSON schema features in
terms of fulfilling the need of schema users. This was done on
a small scale by [5] on almost 159 JSON schema documents.
But these documents is very limited in numbers and do not
reflect the entire community of JSON schema. In our work,
we will try to expand the schema analysis both in numbers and
features aspect in the process of capturing the entire space of
schema users. However, we limit our work to just the formal
definition of JSON schema.

The structure of the paper will as follows: section 2 will be
devoted for methodoly, section 3 for the data collection stage,
section 4 for the schema analysis, section 5 for discussing the
result of the analysis, section 6 to explain the related work,
and section 7 for conclusion and future work.

II. METHODOLOGY

Noted by [5], the large number of schemas was stored in
Google BigQuery. Our work will be splited into two phases
the first phase deals with the data collection steps and the
second stage will deal with the schema analysis along with its
supported keywords.

A. Data Collection

In the data collection phase we will start by collecting
all available schemas in that use the standard JSON schema
definition in Google BigQuery. Because we expect the result
to have duplication and errors and the existence of these two
types errors will lead to misleading result, we will remove any
duplication in the data and validate all JSON schema before
we carry our analysis.

B. Schema Analysis

In this phase we will analyze high level features starting
with the distribution of schema versions then it will continue
with help of AJV validator to validate these schemas under
different settings. To gain more grasping details to the schema
complexity we will measure the length of each JSON schema
after pretty printing. After completing the high level features
analysis, this study will shed the light into low level features
analysis by examining the frequcny of supported type usage
along with their supported keywords. Lastly we will finish the
analysis by analyzing schema composition, annotation, and
schema re using.

III. DATA COLLECTION

Data collection phase is crucial for the success of any
project that involves sourcing and collecting raw data. Our

project is no different, we utilized GitHub repositories as
the data source from which will extract JSON schemas and
prepare it by removing any duplication and ensuring their
JSON validity for our analysis using BigQuery as the project
data warehouse and python json library as the library of choice
to validate JSON files.

A. BigQuery

BigQuery is a serverless data warehouse that allows its
users to run large query over terabytes of data in timely
efficient manner. Google BigQuery is compatible with ANSI
SQL where it allows its users to run regular SQL queries over
the desired tables to ease the learning curve for new users.
One additional feature, which enables us to carry out our
analysis, is that it includes public datasets from wide variety
of organizations and data sources such as world-bank, GitHub,
and crypto-currency etc.

B. GitHub activity dataset

In our project, we will use “GitHub activity dataset” stored
in BigQuery to extract JSON schemas. As of July 3rd 2021
The dataset contains more than 3 million open source repos-
itories representing a wide range of projects, the size of the
data is over 3 terabyte containing more than 163 million files.
Also, the dataset comprised of 9 tables, four as sample tables
and the rest for the entire dataset. The project will focus on
two tables of relevancy contents and files tables.

C. Data Extraction and JSON validation
We ran a query to extract all files that end with ”.json”

and contain the url ”www.json-schema.org”, the url refers to
the standard definitions of all drafts, out of the BigQuery. The
result of the query is the following: We had a CSV file that
contains approximately 47,610 entries. After filtering out the
duplication we were left with 30,012 unique entries that will
be processed to ensure their JSON validity.

The JSON validation stage encompasses loading the files
into python script that assures, using JSON library, each record
validity before it has been considered for the analysis stage.
The result of this stage was almost all the records, except 766,
were valid JSON files. Those who failed the validation stage
were manually analyzed to highlight the common mistakes
among them. Interestingly, one major reason for failing the
validation stage was using python dictionary’s notation instead
of JSON’s in writing the presumably JSON files. Such error
may occur because of the similarity between their notations, or
serializing python dictionaries directly before converting them
to JSON. Other notable reason is that few of the files contain
double back slashes, JavaScript comments tag, which directly
lead to invalid JSON document. The result of the JSON
validation stage is 30,012 thousand valid JSON documents
that will be used in the following analysis.

IV. SCHEMA ANALYSIS

A. Schema Distribution

After obtaining the dataset, the analysis will start by ana-
lyzing schemas’ versions by looking at the top level $schema

Rochester Institute of Technology 2 | P a g e

RIT Computer Science • Capstone Report • 20171

Figure 1. Data Collection steps and result

property. Almost 3,972 JSON files do not have top level
$scehma keyword. That is due to few reasons such as the
schema is a part of larger JSON file, or the targeted url
www.json-schema.org was included for other reasons not in-
cluding defining a JSON schema, these schema will be out of
the scope of this analysis.

Figure 2. Schemas version distribution

As figure 2 shows, version 4 is the most widely used schema
version, it is used more than all other versions combined.
comes behind it is version 7, even though it is two years
younger than version 4, it did not get the same adoption
as its predecessor. One notable observation is that versions
1,2,5,2019 etc were not used as the other popular versions.
they were rarely used, at least in open source projects, as an
example version 2019 is present in less than 90 schemas.

B. Schema Validation

AJV validator [4] provides the option of validating a schema
during the compilation stage in different modes. The variations
of schema validation is considered a part of what is called strict
mode. By default strict mode validate JSON schema during
the compilation stage, and AJV user has the options to adjust
schema validation to match their needs. In this analysis we
sat all strict mode options to false and in each run we turned
just one option to true to measure the impact of validating one
option, such as strict types on the schema validation stage.

Strict mode option Number of valid schemas
All false 14706
strict schema 7771
strict number 14706
strict types 12164
strict tuples 14187
allowDate 14706

Table I
SCHEMA VALIDATION RESULTS UNDER DIFFERENT SETTINGS

By examining the result, clearly that out of all schemas,
when strict mode is on, two thirds of the them were invalid.
Different behavior. The number of invalid schemas degrades
significantly when strict schema option is turned off resulting
in 14,706 compiled schmeas. Furthermore, allow date and
strict number options has no effect on the compiling stage
indicating that these two options have zero to minor presence
across all JSON schemas. For invalid schemas, The errors were
mainly due to unknown keywords or formats that are present
in the schemas. Further discussion about the errors will be
provided in the discussion section.

C. Lines of Code

When measuring the complexity and time needed to parse
and validate JSON schema. Lines of code comes in handy
to measure a schema complexity. It is also beneficiary for
validators developers knowing such information to reevaluate
JSON Schema validators’ validation speed as in [6]. In the
previously mentioned json-schema-benchmark the validation
speed were based on test cases which are relatively smaller in
size than the real JSON schemas.

Before measuring the schemas’ lines of code each schema
is readjusted using 4 spaces indentation to ensure that they
share the same format for fair measuring.

As figure 3 displays that the mean length of a schema is
288 lines which is considerably larger than typical test cases
provided by JSON schema test suite [7]. Interestingly, the
largest schema contains 32,910 written by [8] used for com-
puter graphics purposes. while the smallest schema contains
just 3 lines representing an empty schema that just declares
top level $schema key.

D. Data types
In the next step of the analysis the light will be shed at

the basic data types that are supported by JSON schema.
String, Integer, number, boolean, null, arrays represent the

Rochester Institute of Technology 3 | P a g e

RIT Computer Science • Capstone Report • 20171

Figure 3. Schemas lines of code in log scale

basic supported types by JSON schema definition as well as
other user defined types. This step of the analysis will focus
on analyzing these types and their associated keywords. The
analysis will be divided as follows: first, each occurrence of
any of these data types will be counted. second each data
type will be examined solely with its associated keywords
which will be used later in the analysis to draw a typical
JSON schema.

Type Count
String 239,044
object 111,097
Integer 27,823
Number 30,489
Array 52,268
Boolean 31,444
Null 4,866

Table II
DATA TYPES FREQUENCY

1) Data types distribution: expectantly as table 2 expresses,
string types is the most common types across JSON schema
where it was defined more than all other types combined.The
least used type is null types. the reason behind that it is mainly
used in schema composition such as oneOf or anyOf where
it is required to not have an empty values.

2) Strings: Analyzing string types with its associated key-
words, minLength, maxLength, pattern and format comprised
of counting the frequency of each usage of these data types
along with the common patterns and format. such counting
provides valuable details for the schema inventors where they
can target and improve on those area by providing additional
support for those who needs special format or features.

keyword Count % of strings
format 10,617 4.44%
pattern 21,440 8.96%
minLength 17,420 7.28%
maxLength 17,221 7.20%

Table III
STRING ASSOCIATED KEYS FREQUENCIES

In JSON schema format keyword refers to a set of built-
in regular expressions that the schema definition supports
natively. This set is defined to support and unify popular
regular expressions. The majority of regular expressions that
is supported by JSON schema is used in web applications
environment such as ipv4, ipv6, and uri.

format % of formats
date-time 39.58%
uri 27.36%
ipv4 3.95%
ipv6 3.61%
Duration 3.46%

Table IV
THE MOST FREQUENTLY USED FORMATS

Noticeably, duration format is not defined by the formal
definition of JSON schema, yet it is the fifth most frequent
used format by almost 367 declaration in more than 100
schemas.

To ensure flexibility and option diversity, schema definiton
support defining regular expression in which a string entry
must be valid against. This feature is what is refereed at as
pattern. Because of versatility of pattern in defining unlimited
pattern of reguralr expressions including those which are
defined under format category the, the popularity of pattern
overruns other strings associated keywords especially format
where pattern is almost as twice as it.

pattern % of formats
ˆ(\s|\S)*$ 8.82$
ˆ([\w\/-]|[\w-][\w\/-]*[\w-])$ 7.56%
ˆ[A-Za-z0-9:_\-]+$ 6.95%
ˆ([a-z0-9-]+):([a-z0-9\.-]+)
:([a-z0-9-]+)?:([a-z0-9-]+)$ 6.95%
ˆ[\w\/\.:-]+$ 5.53%

Table V
THE MOST FREQUENTLY USED PATTERNS

As table five displays, that the most commonly used pattern
is a regular expression that accept anything. The reason behind
using such pattern, which is equal to the absence of pattern
key, is that it works as a placeholder by software-generated
schemas where each string type entry contains pattern defini-
tion. The second most used pattern is a pattern that is valid
against system paths expressing a reasonable need for adapting
this regular expression in JSON schema’s supported formats.

3) object: The second most used types in JSON schema
is object type, which is the core foundation of JSON files
itself from which it gained its flexibility and expressive power.
The associated keywords with objects are oriented to the size

Rochester Institute of Technology 4 | P a g e

RIT Computer Science • Capstone Report • 20171

and the flexibility of the schema. Using object’s keywords
gives schemas’ owners the ability to control not just the
required entries, they also can control the degree of fredom
that allows JSON to be viral. additionalProperties key accept
boolean keywords that allows the owners of the schemas to
control if they allow additional key-value paired into their
system. Moreover, required targets the required keys that must
be present in all JSON documents that conform to desired
schema.

keyword Count % of objects
additionalProperties 42,688 38.42%
required 52,637 47.37%
minProperties 558 0.50%
maxProperties 248 0.22%

Table VI
OBJECT ASSOCIATED KEYS FREQUENCIES

Approximately 30.4% objects do not allow any additional
features while the rest of objects allow additional features
either by setting the additionalProperties to True or leaving
it undefined indicating the same result as setting additional-
Properties to True. This behavior implies that one third of
the schema users go the extra mile of defining all features
that their schmas should accept.

4) Numeric values: Numeric types, Integer and Number,
have always been an essential part of JSON. In JSON schema
the use of numeric types becomes more important due to
their ubiquity within the schemas. One average each schema
contains approximately four definitions of numeric types, two
for Integers and two for Numbers. Building on the previous,
an investigation of the use of numeric types is conducted
to gain further insight of numeric types and their associated
keywords. Furthermore, we resonate Analysing both Integer
and Number types together due to the identically they share in
associated keywords. The table below illustrates the frequency
of each associated key word.

keyword Count % of numerics
mutlipleOf 365 0.62%
minimum 16,307 27.97%
maximum 8,296 14.22%
exclusiveMinimum 1,000 1.71%
exclusiveMaximum 241 0.41%

Table VII
NUMERIC TYPES ASSOCIATED KEYS FREQUENCIES

By examining the result, it become clear that associated
keywords is widely used among Numeric types when it is
compared to their counterparts in String. where approximately
27% of numeric types definition use one or more associated
keyword. Another noteworthy observation, 97% of the times
that maximum value is defined, minimum value is defined
too. the same phenomenon is extended to cover inclusiveMax-
imum and inclusiveMinimum with approximately the same
percentage as well. However, the opposite inference can not
be inferred, minimum presence is not linked with the presence
maximum value by high confidence rate.

5) array: : Array types have wide variety of defining
options when compared with other JSON schema nativly
supported types. Beside defining the min and max length of
the array, the user have the options of defining whether an
array must be treated as a set by assigning True as a value
of uniqueItems key. Moreover, what an array must contain in
terms of type specific values or the order of assigning those
types within the array is left as an option for the schema
user too. One use case of controlling the order necessity is
formed when defining an address needed by a schema. [house
number, street name, street type, city, state, zip] is an
example of address composition where the order of the entries
within an array matters. The previously mentioned behavior
can be controlled by the key items where the user have the
option to define one type array or order specific array by
assigning the needed value to items key. contains key adds
another aspect to array definition where an array instance
becomes valid if it contains one or more instances of the value
of the key contain

keyword Count % of arrays
uniqueItems 4,666 8.92%
contains 4 0.00%
items 51,007 97.59%
minLength 13,282 25.41%
maxLength 6,149 11.76%
additionalItems 1785 3.41%

Table VIII
ARRAY ASSOCIATED KEYS FREQUENCIES

Clearly that the use of the associated keywords is less
frequent in array types than object types, even though they
share a lot of definition features. One axiomatic reason is that,
multiple of the use cases of these keywords can be interpreted
by the values of items keyword which has been abundantly
used when defining an array type. the aforementioned reason
can be supported by the frequency of using min and max
where it can not be fully specified by items.

Nearly 8.8% of all defined array types are set to be set of
unique items. meaning that roughly 91.2% of schemas have
assigned the value False for uniqueItems key either by direct
assignment or leaving it undefined. similar behavior of not
fully controlling arrays is exhibited with additionalItems key
where just 2.2% of all arrays instances disallow any additional
items directly. Yet, further analysis needed in arrays to reveal
and combine overlapping result between keys.

6) Annotation: When thinking of annotation it comes to
mind tools and rules that is mainly defined to help and
provide further information that is needed by users of a
tool. In case of JSON schema, annotations provides the same
benefits except the annotation is also a key-value paired within
JSON documents that is intended to work as a guide and an
explanatory keys for those who intended to write documents
that must conform to a schema. Annotation keys can be
divided into two main categories one affects the schema itself
and declared to be used during compilation time const: in case
of constant entry,default: if a value of key is not present,enum:

Rochester Institute of Technology 5 | P a g e

RIT Computer Science • Capstone Report • 20171

to declare a finite set of value options from which a user must
chose, and readOnly, writeOnly: to set the rules of APIs or
documents user which value is intended to read and which
to write. And the other category, that must be ignored by
a validator during the compilation stage, comprised of title,
description, $comments, and example.

keyword Count
const 2,731
default 34,967
enum 67,108
readOnly 230
writeOnly 6
example 3,218
$comments 7,139
description 273,399
title 33,682

Table IX
ANNOTATION KEYS FREQUENCIES

By far among all annotation keywords description takes
the lead in terms of usage, roughly 53% JSON shcema type-
specific keywords have a description. The same can not be
implied for title, even when the number are almost double
the number of schemas that we used for the analysis, nearly
one third of JSON schema are using title because each JSON
shcmea is not limited to use just one title. For example, One
schema uses 1158 titles, 2299 descriptions, And there are
several shcmeas that follow the same behavior. Backing to
the category that affects the schema, with the large magnitude
of enum types, they enclose interesting values and behaviors
that overlap with other natively supported keywords. The first
keywords is const, almost 37130 enums are using single-value
enum, the same effect as defining const, instead of using const
for better practice. However, by knowing that large number
of JSON schema are generated by softwares and the same
softwares that generates mutiple-values enum are suppose to
generate single-value enum, the reason for this practice comes
clear that it is more easier to write single piece of code that
is responsible for all enums reading and writing instead of
dividing the work into multiple pieces. The second keyword
that is overlaped by enums is boolean, multiple enums’ arrays
just contain True and False which could be easily, and for
better practice, replaced by boolean values ,yet the same
reason for the overlap in const is implied on this case too
but the effect of the overlap is considerably lower than const.
Even though, readOnly and writeOnly are three years old and
they were meant to mainly serve within API’s environment,
they have not been used considerably, it is even worse for
writeOnly comparable to readOnly where only 5 schemas are
declaring it. On the other side, the rest of annotations keywords
have been used adequately. Furthermore, the second category
of schema annotation keys, the one that works as a guide for
schema reader, is used significantly. The previously mentioned
conclusion, entails that even if schemas were generated by
softwares these schema were intended to be read by users.

E. Reusing schema

Ruse code has been always an integrated part of the majority
of programming languages, JSON Schema allows similar
practice that allows developer to reuse their schema or part of
it by defining reference point using $ref keyword that points
to one address under definition property. Using this feature
unlocks new horizons for using JSON schema and it ensures
easiness of defining and more robust schemas. It is safe to say
to that reusing schemas is a common practice among schemas
considering the nature that it was created for. Almost 34% of
the collected schemas are reusing pieces of their schmeas with
different frequencies.

Figure 4. Reusing schema definition frequency

By examining figure 4, we can conclude that, in most cases,
schema definitions are reused once, meaning they were defined
under definition property then they were used in schemas.
This practise could be interpreted in two ways either schema
developers are planing to extending their schemas. or they are
defining their schemas and then reuse to better organization.

F. Schema composition

Another feature that is provided by JSON schema definition
is schema composition. It enables schema users using specific
keywords to compose multiple schemas from multiple sources
into just one schema. The definition of these keys is based on
algebraic operators, allOf , anyOf , oneOf are meant to match
AND, OR, and XOR characteristics respectively. Due to the
speciality of using these operators, the presence of composed
schema is slightly less than what features we have analyzed
thus far, approximately 26% of JSON schemas contain one or
more schema composition operator with significant advantage

Rochester Institute of Technology 6 | P a g e

RIT Computer Science • Capstone Report • 20171

for oneOf keyword compared to other schema composition
keywords as figure 5 shows.

Figure 5. Schema compostion keywords

One possible reason for the lack of using allOf property
is that it can be easily replaced by required feature under
the definition of object types which is decently used in JSON
schema. One supportive evidence of this finding can be derived
from the frequency of oneOf when has no alternatives within
the standard JSON schema definition which requires those
who want to preform XOR function to use the only available
feature that support this function oneOf key.

V. DISCUSSION

During compiling stage, it was clear that we lost almost two
thirds of schmeas when strict mode is on due to their invalidity.
Losing this many of data arises an important question, What
are the common mistakes among JSON schemas? The ma-
jority of errors were because unknown formats and unknown
keywords. For both formats and keywords, the reason is not
only these formats and keywords do not exist in JSON schema
definition, in the majority, they exist but the reference of
schema definition that these schemas refer to does not support
these keywords yet. For example, readOnly keyword was the
main reason for schamas invalidity for 745 schmeas, all of
these schemas use version 4 definition which does not support
readOnly property. The same reason for example where almost
254 of schemas that fail the validation is because they refer
to version 4 instead of version 6 that supports this keyword.
Actually, the non-presence of unknown keywords in schema
definition was slighlty less than the present ones. In one
case which is ”resourceDefinition” which was introduced
by Microsoft. ”resourceDefinition” accounts for 935 schema
errors in our data. However, that does not spare the AJV
validator as one cause of errors. sadly, it does not support
validation version 3 of the schema. Thus, they all failed the
validation and we can not assume their validity while we are

not able to compile them using the validator. On the other side
of the spectrum, schema invalidity due to invalid syntax is rare
among those who use the schema. Approximitly, 7.07% of the
collected schema were invalid because of invalid syntax in the
schema itself, highlighting a fact that most of schema users
are ,at the very least, aware of one formal definition of JSON
schema.

In general, JSON schemas show a humongous variation
in size and feature use. where the sizes of schemas ranges
from 3 to 32,910 lines. Almost the same variation is exhibited
when looking the at JSON schema from every other aspect
such as type distribution, association keyword, and schema
compositions. One main reason of this variation is the ap-
plications where JSON schema are used in. They vary from
simple application to infrastructure configuration.

It was mentioned multiple times in the analysis software-
generated schemas which accounts to significant portion of the
collected schemas. We mean by these the schemas, the class
of schemas that was generated by softwares. Even though,
there is no absolute certainty when deciding if a schema
was created by a software or they are pure human work,
we assume schemas that show certain behavior such as large
length, using all associated keywords with all types, even
if it was harmless to neglect them, or correct unintended
use of schema features like enum with boolean array. While
using software to generates schema is a brilliant idea, using
such softwares have lead to new ways to instantiate schemas.
In the positive side, they allow users to create very large
schemas that would be infeasible for human to define and
comprehend which allow the schema to be used in more
complex applications. They are perfect to use when it comes
to avoid typos and nesting schemas. On the negative side, in
few occasions they did not use the schema as intended to be
used. For example, using enum with boolean values, where
they suppose to use boolean to ease the schema interpretation
and allow JSON schema validators to function properly. On
the side of easing the interpretation, instead of using natively
supported formats, multiple software generated schemas are
using regular expression to define predefined formats. In the
end, further investigation needed for this type of schemas.

VI. LIMITATION AND FUTURE WORK

Despite the fact that our work is almost two order of
magnitude of [5], we did not consider all JSON schemas
available in BigQuery. Our work was limited to JSON files
that use standard JSON schema definition. As of July 3rd 2021
there are almost 87,000 JSON documents that contain top level
$schema keyword, Roughly double the files that use standard
JSON schema definition. Most of these files use modified
version of the schema definition which potentially would
work as a great starting point to explore what the community
of JSON schema needs to be adopted by later versions.
Another limitation to our work is that AJV validator have
a considerable false positive rate, almost 10%, in validating
version 7% which would affect the result of this analysis.
One solution for this dilemma is to use more than one JSON

Rochester Institute of Technology 7 | P a g e

RIT Computer Science • Capstone Report • 20171

schema validator to validate the schema before any another
analysis. Lastly, in few occasions large shcemas skewed the
result of the analysis. Using outlier elimination methods to
eliminate these schemas would result in better approximation
for what a real JSON schema look like.

VII. RELATED WORK

As of now, the only related paper to ours is [5]. Their
work was inspired from [9]. They were the first to take JSON
schema analysis into empirical analysis studies, yet the number
of schema that they analyzed in their work does not reflect
the whole set of JSON schemas. One different factor is that
in their work they manually classified JSON schema into four
different categories, but in our experiment we dealt with JSON
schema from different prospective were we considered JSON
schema as a whole set from which we will derive conclusion
in the way of dividing JSON shema. We value their work for
being the spark that ignite the flame of this study, as well as
bridging the gap between schema users and definers.

VIII. CONCLUSION

With the emerge of the recently born JSON schema, many
different applications have utilized as a tool that works as
data definition language for their JSON documents. With
the most mature JSON schema validator [4], in this study
we collected and analyzed 26,033 JSON schemas. We found
out that the majority of JSON schema that use the standard
definition are using schema version 4. Even with the majority
of the collected schemas being invalid we concluded that
most of the mistakes were because of using an old schema
versions. Moreover, the diversity of JSON schema features use
is positively correlated with its length and that the array types
are overrun other types in the use of association keywords. Yet
the joureny of analyzing JSON schema features is still an open
research and we recommend utilzing GitHub data to analyze
all schemas not only those which use the standard definition.
We also recommend microscopic analysis to enum,arrays, and
user-defined types to better understand and reshape the future
of JSON schema.

ACKNOWLEDGMENT

I would sincerely express my gratitude to my professor
and supervisor prof. Micheal Mior for the continues help and
support that enriched my knowledge and guided me through
the adventure of exploring new research area.

REFERENCES

[1] T. Bray, “The javascript object notation (json) data interchange format,”
RFC, vol. 7158, pp. 1–16, 2014.

[2] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations
of json schema,” in Proceedings of the 25th International Conference on
World Wide Web, ser. WWW ’16. Republic and Canton of Geneva, CHE:
International World Wide Web Conferences Steering Committee, 2016, p.
263–273. [Online]. Available: https://doi.org/10.1145/2872427.2883029

[3] M. Droettboom et al., “Understanding json schema,”
Available on: http://spacetelescope. github. io/understanding-
jsonschema/UnderstandingJSONSchema. pdf (accessed on 14 April
2014), 2015.

[4] A. J. schema validator team, “Ajv,” https://github.com/ajv-validator/ajv,
2021.

[5] B. Maiwald, B. Riedle, and S. Scherzinger, “What are real json schemas
like?” in Advances in Conceptual Modeling, G. Guizzardi, F. Gailly,
and R. Suzana Pitangueira Maciel, Eds. Cham: Springer International
Publishing, 2019, pp. 95–105.

[6] A. Ebdrup, “json schema benchmark,” https://github.com/ebdrup/json-
schema-benchmark, 2021.

[7] J. S. O. team, “Json schema test suite,” https://github.com/json-schema-
org/JSON-Schema-Test-Suite, 2021.

[8] “Extensible 3d (x3d) graphics,” https://www.web3d.org, accessed: 2021-
07-03.

[9] B. Choi, “What are real dtds like?” Technical Reports (CIS), 01 2002.

Rochester Institute of Technology 8 | P a g e

