ACM SIGMOD, VLDB and other database organizations have committed to fostering an inclusive and diverse community, as do many other scientific organizations. Recently, different measures have been taken to advance these goals, especially for underrepresented groups. One possible measure is double-blind reviewing, which aims to hide gender, ethnicity, and other properties of the authors. We report the preliminary results of a gender diversity analysis of publications of the database community across several peer-reviewed venues, and also compare women’s authorship percentages in both single-blind and double-blind venues along the years. We also obtained a cross comparison of the obtained results in data management with other relevant areas in Computer Science.