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« The machine learning community, for instance, 1s
producing breakthroughs on a monthly basis

o Many (over)promises that AGI is upon us

e Generative pre-trained transformers (GPTs) and
backpropagation of errors are all we need. ..
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ALCHEMY AND ARTIFICIAL INTELLIGENCE

Hubert L., Dreyfus

* It was once thought that WHAT COMPUTERS December 1365
conscious symbolic CAN'T DO
reasoning / formal rules M d
were all you need... OF ARTIFICIAL REASON ln Over
* Criticizing this view was met aChlne
with ridicule and hostility
By Hubert L. Dreyfus Hubert L. Dr E’lﬁfﬁ

e Later, it was then thought
that kernel machines were
all you need...

* Criticizing this view was met
with ridicule and hostility

Stuart E. Dreyfus

WHAT COMPUTERS STILL CAN'T DO

oA 6 rrﬁgae a/ R/ / vl Recson

Geoffrey Hinton spent 30 years hammering away
at an idea most other scientists dismissed as
nonsense. Then, one day in 2012, he was proven

COMMENTARY “*“

The recent excitement about neural networks




Backprop and Deep GPTs: ALL We Really Need?

e Red Al = machine intelligence w/ massive Model training can cost millions of
dollars, pollution equal to 1000s

carbon footprints of planes!
* Requires hundreds of technicians for GPUs

e Addressing this is fundamental to saving
money/energy and democratize Al

e Generalization issues
e Constraints on architecture (must be
“backprop-pleasing”)
* Weak out-of-distribution generalization

» Catastrophic forgetting is still largely an
unsolved problem!




So, what could we turn to once we realize backprop-
based deep learning might not be all we need?

Maybe we might consider and look to
biomimetics, bionics, and mortal computation

Perspective | Published: 17 April 2020
Backpropagation and the brain

Timothy P. Lillicrap B Adam Santoro, Luke Marris, Colin J. Akerman & Geoffrey Hinton &
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Toward an Integration of Deep Learning
and Neuroscience
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So, what could we turn to once we realize backprop-
based deep learning might not be all we need?

Maybe we might consider and look to
biomimetics, bionics, and mortal computation

Catalyzing next-generation Artificial Intelligence
through NeuroAl
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So, what could we turn to once we realize backprop-
based deep learning might not be all we need?

Maybe we might consider and look to
biomimetics, bionics, and mortal computation

MORTAL COMPUTATION: A FOUNDATION FOR
BIOMIMETIC INTELLIGENCE
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* Bio-motivated self-organization, structural

selection, adaptivity r \
Statistical

* Credit assignment beyond backprop Learning Computational
* Bio-plausibility is not a niche property of Neuroscience
Interest to neuroscientists:
* Vital for implementation on energy-efficient Cognitive
neuromorphic chips Sclence

 The devil is in the details
* How much neurobiological detail is needed?
“Everything should be made as simple as possible, but no simpler.”
— Albert Einstein




What’s Wrong with Deep Learning
and Backprop?
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The Nevral Processing Unit
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Used in an update/optimization
step (e.g., SGD):

W! — W — pAW!

| /

Rumelhart, DE, et al., "Learning representations by back-
propagating errors." 1986.
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(a) The weight transport problem. (b) The forward-locking problem. (c) The update-locking problem.

e Other Problems with Backprop:
* Global Feedback Pathways
* Inference-Learning Dependency

e Constraint and Sensitivity (e.g.,
requires derivatives)

e Short-term plasticity, dynamics

Credit assignhment = the credit/blame game

Grossberg, S. "Competitive learning: From interactive activation to
adaptive resonance." 1987.

Crick, F. "The recent excitement about neural networks." 1989.

Ororbia, AG. "Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment. 2023.
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Backprop through time and recurrent networks:
The issues get worse!!

17



* We are not working w/ the “right” building blocks
* Backprop is easy and rather fast to use
* Recurrence is easier to eschew (“time windows are all you need”)
* Pointwise neurons are easy and rather fast to use
* Lots of nice innovations / applications

* There are (possibly insurmountable) roadblocks
* Energy inefficiency, sample inefficiency
e Catastrophic forgetting
* Online / real-time learning
* Sparse reward/signal reinforcement learning

* We have not tapped into full value of what nature and biological neural
computation / credit assighnment bring to the table



Neurobiological Credit Assignment:
A Taxonomy of Frameworks



A Galaxy of Neural Credit Assignment Processes
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A Galaxy of Neurdl Credit Assignment Processes

33,2
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Backprop

Feedback alignment
(Lillicrap, 2016; Ngkland, 2016)
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Contrastive Hebbian Learning / Divergence,

w, |am < ---" L'= el Local Represgntatlon.Allgnment Wake-Sleep, Equilibrium Propagation
oex (%"” ’Z?’ &t’v’;”"z gg;)g' (Movellan, 1991; Hinton, 1995 & 2002;
¥ rorbia et at., Scellier, et al., 2017)
Backprop T=3
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Martinetz, 1993)
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Local Representation Alignment

Contrastive Hebbian Learning / Divergence,
Wake-Sleep, Equilibrium Propagation
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Competitive Hebbian Learning Recirculation
(Kohonen, 1982; Grossberg 1987; (Hinton, 1987; O'Reilly, 1996) 25

Martinetz, 1993)



Okay, let’s take a
step back and
organize this a bit...



Ororbia, A. G. "Brain-Inspired Machine

Post-synaptic neuron Intelligence: A Survey of Neurobiologically-
Plausible Credit Assignment.” (2023).

Pre-transformation
Pre-synaptic neuron . .

\ | . . ‘h,E _ WE ) zE—%‘j Zf — qbf(hf
ool o

Post-transformation

Wf'l

! Ororbia, A. G., et al. "A review of
W neuroscience-inspired machine
learning.” (2024).
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Synapse (or synaptic juncture)
relates transmission between
pre-synaptic neuron j to post-
synaptic neuron j

A
y 2"
L
W=/
7 L-1
Neural processing
.. elements (NPEs)
dzi?] zL
W ¢
7z I
Wf
0 —
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Neural System Context Framework Taxonomy

Signal Type

Optimization
7 Scheme

/ A
/
O/ , AO Implicit Explicit
/ Credit | Hebbian (2F) \
;! Assignment Competitive
Global
/ /f A * o
/v [ RFA /DFA/IFA
R v KP/ WM
’, L DRTP
L’ | 1"1 1 Non-synergistic Synergistic HSIC
lEnmputatIDnm .‘":“ | [ \ l| Objective ﬁ ( @)l\ Luc?l Sign_alars Neuromod / Hebbian (3F)
| Architecture I ' A 1 Function \ Recirculation
e — — — — | N J \ SLU
~ I \
S \
M :_ N 5‘;"5“'? I Discrepancy-Based | | Energy-Based Forward-Only
N zfgmnmmam lin | “r?am / TP/DTP/DTP-o CHL/ Gene-Rec SigProp
b Procecs - , LRA / rec-LRA CD / SAP FF / PFF
| __ o L7 PC/NGC/BC-DIM  Wake-Sleep PEPITA
LA 2 - EProp EFP
Queries: Credit Assignment
yIx, p(y[x), p(y.x), p(x), p(x(t)[x(<t)) ... Taxonomy

Ororbia, A. G. "Brain-Inspired Machine Intelligence: A Survey of Neurobiologically-

29
Plausible Credit Assignment.” (2023).



Signal Type

Let’s Zoom into the R,

Implicit

Explicit

One of These Families: e

Competitive

Local

Discrepancy-Based N

Global

RFA/DFA/IFA
KP/ WM

DRTP

HSIC

: Non-synergistic Synergistic
e a r n I n g Local Signalers Neuromod / Hebbian (3F)
Recirculation
SLU

This is where predictive coding lives!

Discrepancy-Based |Energy—Based

Forward-Only

TP/ DTP/DTP-o CHL / Gene-Rec  SigProp
LRA / rec-LRA CD/SAP FF / PFF
BC-DIM Wake-Sleep PEPITA
EProp EFP

Predictive coding (= a “Synergistic Local Explicit Algorithm”)

30



Predictive coding: brain generates
hypotheses, adjusts/corrects based on data

« Sparsity through sparse coding

* Brain = probabilistic, hierarchical / heterarchical

[ J
The World
hN )
N N
Ve 7 7/ N
/, r \\7/, \__,\.\
/__,,-' '/’// P D/ .
"
Hidden State """ —
("Internal to (map[!mg
the World) function)

rd

~ B __—_._—T.::Zix::)’j ,«‘:;
| ;h a ‘\..’:
r——*—b Parameters
* Visible State "7 * Hidden State
("External") { ( nverse ("'Internal™ to ,x/
Qﬂgplng) the Estimator) //
N S

N Py
\ P

Von Helmholtz, Hermann. Treatise on physiological optics. 1867 .

Prednctmns LE

+ Prediction errors
(mismatch response)

Predictions

e i

Prediction errors
(mismatch response)

8

(Image taken from Stefanics et al., 2014.)

Sensory input

Rao, RPN, Ballard, DH. "Dynamic model of visual
recognition predicts neural response properties in the
visual cortex." 1997.

Olshausen, BA., Field, DJ. "Emergence of simple-
cell receptive field properties by learning a sparse
code for natural images.” 1996.
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Neurobiological Motivations

The World /" The Estimator
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%
Predictions -
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Sensory input
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* We take a neuronal dynamics approach to inference
and learning

* Everything is inherently and naturally temporal
» Passes/aggregates bottom-up & top-down signals

e Constantly generating hypotheses & adjusting
based on data samples

Rao, RPN, Ballard D. Predictive coding in the
visual cortex: A functional interpretation of some
extra-classical receptive-field effects. 1999.

Friston, K. "A theory of cortical responses." 2005

Ororbia, AG, Kifer D. "The neural coding framework for
learning generative models.” 2022.

Generative
synapses

Deep excitatory
pyramidal cells

Error feedback

synapses

Superficial
pyramidal cells




Step 1:
Hypothesis
Generation

Inhibitory carry-through synapse
Inhibitory synapse
Excitatory synapse

Excitatory carry-through synapse

A (Variational) Free Energy:

F(O) =

L

2.5

£=0

fZ(z (t) — z%)°

34



Step 2:
Mismatch/Error
Computation

Inhibitory carry-through synapse
Inhibitory synapse
Excitatory synapse

Excitatory carry-through synapse

35



Step 3:
State
Correction

Inhibitory carry-through synapse
Inhibitory synapse
Excitatory synapse

Excitatory carry-through synapse

36



Go back
to Step 1

This generate-then-correct
process is repeated over a
stimulus window of length T

(Conducts bounded iterative
inference to converge to
stabler state that pleases
mapping between input &
output signals)

37



Go back
to Step 1

OR

Update
synaptic
efficacies

If synaptic adjustments are
scheduled every T time
steps, you get dynamic
expectation maximization
(DEM)

Friston, K.J. "DEM: a variational treatment of
dynamic systems.” 2008.

38



What does this framing buy you?

* Optimize lower bound of model evidence (marginal likelihood) =
variational free energy

* |t generalizes to more complex, flexible architectures, e.g., directed
graphical models and networks with cycles that resemble brain regions

Postsynaptic neurons

1001
1010
0100

0000 .

0000
0000

. | 3,016 neurons
548,000 synaptic sites

Presynaptic neurons

Salvatori, T., et al. "Learning on arbitrary graph
topologies via predictive coding." 2022

Winding, M., et al. "The connectome of an insect brain." 2023

39



102

* It has been proven that PC is more robust than
standard backprop-trained deep networks

* Yields advantages in: online learning, training on small

datasets, continual learning 10°r
* |t shares interesting similarities w/ BP %’
* |t approximates backprop when output error is small .

1072

* Perfectly replicates backprop’s weight update
when adding a temporal scheduling on
parameters

0 10 20 30 40 50 60
Number of epochs

Whittington, JCR, Bogacz, R. "An approximation of the error backpropagation algorithm

in a predictive coding network with local hebbian synaptic plasticity." 2017.

Alonso, Nick, et al. "A Theoretical Framework for Inference Learning." 2022.

Millidge, B. et al. "Predictive coding approximates backprop along arbitrary computation graphs." 2022. 40



A natural
generative
model of
data!

DATA

DATA GNCN-PDH GAN-AE

MNIST Samples

FMNIST Samples
P o -
yME T .

DATA

GNCN-PDH  GAN-AE

SHEARH

CalTech Samples

CRE 8o 220 N
EH {GN&N-F'I:;H}

Y

-‘,J .‘ Ororbia, AG, Kifer D. "The neural

m * - coding framework for learning
'.'c‘! generative models.“ 2022.
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A closer look at some NGC confabulations!
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PC able to
perform basic
denoising

{a) Original image. (b) Corrupted image. {c) Denoised image.

{d) Original image. {e) Corrupted image. (f) Denoised image.

Figure 3: Example image randomly sampled from a dataset test set (Left), the same image corrupted with noise
~ N(0,0.1) (Middle). and the Conv-NGC denoising of the corrupted pattern (Right). Top row shows a sample
taken from CIFAR-10 while the bottom row shows one taken from SVHN.

PC implicitly learns an
image pyramid in its
distributed representations

Ororbia, Alexander, and Ankur Mali. "Convolutional neural generative coding:
Scaling predictive coding to natural images." 2022.

46



Predictive Coding and Convolutional

Processing
BP PC
MLP on MNIST 98.26% £+ 0.12% 98.55% + 0.14%
MLP on FashionMNIST 88.54% + 0.64% 85.12% £ 0.75%
CNN on SVHN 95.35% £ 1.53% 95.53% + 1.54%
CNN on CIFAR-10 69.34% + 0.54%  70.84% =+ 0.64%
Salvatori, T., et al. "Incremental Predictive Coding: A Parallel and Fully Automatic Learning Algorithm." arXiv preprint arXiv:2212.00720 (2022). 47
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Dynamic, Temporal Predictive Coding

Bouncing MNIST Bouncing NotMNIST
. . . Model Test CE  Test SE || Test CE Test SE
° Can be done with fast-changlng Welghts>X< LSTM-FP [56] (BPTT) 350.2 — — —
. . = LSTM-CFP [56] (BPTT) 341.2 —— —— ——
e Or via parallel temporal neural coding £ LSTM. BPTT (impl)  375.42 8527 || 787.51 256.66
= LSTM, SAB (impl.) 379.3 86.79 T87.99 256.89
Z GRU, BPTT (impl.) 375.0 85.18 788.00 257.01
RNN, BPTT (impl.) 391.4 90.14 795.12 269.29
RNN, SAB (impl.) 392.7 90.22 794.21 265.21
= ESN (impl.) 489.2 99.86 812.43 305.57
ug LSTM, UORO (impl.) 386.7 89.21 789.48 259.10
S LSTM, RTRL (impl.) 361.2 85.89 778.29 222.08
£ P-TNCN (ours) 338.79 79.67 713.67 176.73
ZERO-SHOT ADAPTIVE PERFORMANCE OF THE MODELS TRAINED ON
NOTMNIST AND TESTED ON MNIST AND VICE VERSA
NotMNIST — MNIST || MNIST — NotMNIST
Model, 0-shot | CE SE CE SE
LSTM, BPTT 492.21 104.76 1297.26  325.56
Parallel temporal neural coding LSTM, SAB 499.21 105.87 1299.28  329.59
LSTM, RTRL 447.28 99.89 1211.01  293.56
P-TNCN 377.30 89.39 1131.7 257.07

Ororbia, A.. et al. "Learning to Adapt by Minimizing Discrepancy." (2017)

Ororbia, A.. et al. "Continual Learning of Recurrent Neural Networks by Locally Aligning Distributed Representations." (2019)

* Jiang, L. et al. "Dynamic predictive coding: A new model of hierarchical sequence learning and prediction in the cortex." 2022.

13




Method CORA CiterSeer PubMed

BP 80.72+1.05% 67.12+1.53% 77.1+1.45%
PC 80.7+1.09%  67.26 +1.28% 76.2 £+ 2.44%
Py e Y
Graph Neural I I O L
Network ' /= o \/—* ” v
Topologies | | .4 |4

Byiringiro, B., et al. "Robust Graph Representation
Learning via Predictive Coding." 2022.

PCx
1000 — g ifm
Training Method Test Perplexity
. BP 162.64 +0.76
250 PCr, 17590 +1.74
125 PCr 590.08 + 12.60
0 1 2

Ororbia et al., 2024; Coming soon! Epochs
, ’ J Yes, even Byiringiro, B., et al. "Robust Graph Representation Learning

Keep an eye out on arXiv! transformers! via Predictive Coding." 2022.
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Sequential Neural Coding Network (S-NCN)

Table 3: Generalization metrics (10 trials) for Split MNIST, Split NotMNIST, and Split Fashion MNIST (FMNIST)
benchmarks. Note for IMM, we employ the best performing variant, L2+ DT+Md-IMM.

MNIST NotMNIST FMNIST
ACC | BWT | | ACC | BWT | | ACC | BWT

EWC (SH) 19.04 = 0.03 —0.3569 = 0.015 18.55 & 0.02 —0.3611 £ 0.01 19.88 = 0.06 —0.3499 = 0.012
O-EWC (SH) 19.56 = 0.04 —0.3500 = 0.01 18.45 £ 0.03 —0.3600 £ 0.012 19.02 £ 0.05 —0.3422 1+ 0.01
NR+Mem-1 (SH) 90.58 £ 0.87 —0.05 = 0.001 89.02 = 0.030 | —-0.071 = 0.004 90.01 £ 0.81 —0.06 = —0.003

000 o0
ICarl (SH) 93.99 £ 0.41 —0.100 = 0.004 88.69 £ 0.102 —0.109 £ 0.007 95.95 £ 0.40 —0.110 = —0.005
Lucir (SH) 94.02 £ 0.31 —0.103 = 0.007 93.45 = 0.093 —0.101 £ 0.006 95.02 £ 0.34 —0.110 = 0.005
Bic (SI—I) 90.09 = 0.86 —0.139 £ —0.009 || 85.09 = 0. {]99 —0.155 £ 0. DDQI 89.00 £ 0.85 —0.160 = 0.009

04 (] i . 0f 7 () 20 T

Context | Context |
T(x o~ T(x T~
0 [ "~y 0 [ "~y
Generative Generative
Model Model
(x1, Y/ (X2, y2) Ororbia, AG, et al. "Lifelong neural predictive coding:

Learning cumulatively online without forgetting." 2022.

Task Stream / Data Continuum -
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Fast-changing weights work for actions as well*

F
| Generator
| ettt N
o | g T : " 1
[ I t/ h |
[ ] ! 4 \t?,\ P I_
/" log p(a;) N T
| Motor / A Mo \
Wrwrrwe e :
N N S Iy | I
: N Y Poli ¢ //E? L
~
| Replay at S (.9 ICY [y \ : || . L. .
lr __________ — = (] s ] Active predictive coding (ActPC) agent for
E A . i .
| | Seoi ,ﬁéﬁ‘ I | | robotic control - one circuit for:
[ R . D—-é;@n)-— a 1) prior preference,
: - ! 2) generative transition dynamics
Agent | Prior | ) g . Y ’
: l 3) policy, and
ay | | .
v | 4) motor-action
|
Environment = ——————— -
Ororbia, AG., Mali A.. "Backprop-free reinforcement learning with Ororbia, AG., Mali A.. "Active predictive coding: Brain-inspired reinforcement
active neural generative coding." 2022. learning for sparse reward robotic control problems." 2023.

* Rao, RPN, et al. "Active predictive coding: A unifying neural model for active

perception, compositional learning, and hierarchical planning." 2023. 55




Fast-changing weights work for actions as well*

P — — — — — — — — — — — — — — — ——— i e e —— —— — — —

|
| Generator |
| fm——————— 2 e :
| | r—-——- | ,
Y | 8 - | O !
= S = (-~

I Motor / °9p @) N L%

Boyergls AR

e ~

I S N 8 /? Iy '|| :

| b . /

| Replay | o ~ ¥ Policy t; ) | II

| ‘! = (] ' Active predictive coding (ActPC) agent for

| S——— - L - . e predictive coding (Ac agent fo

| : N i L robotic control - one circuit for:

e R 1 D—-é-@-o‘- g 1) prior preference,

Agent | —— | 2) generative transition dynamics,
a, | | 3) policy, and
v | 4) motor-action
|




Mewmory-Avgmented
Neuronal Dynamics

* Working memory-augmented PC:
EE _ gE (WE—I—I _ Q«L’E—i_l (Z£+1) + am(Mf—l—l ) mt))
m; = [(kt—(H—l): e Ky, ---akt—l] and k; = Q - xy

H =7, inspired by:

Miller, GA. "The magical number seven, plus or minus two: Some limits on our

capacity for processing information." 1956.

Ororbia, AG, Kelly MA. "Cogngen: Building the
kernel for a hyperdimensional predictive
processing cognitive architecture." 2022.

Ororbia, AG, Kelly MA. "Maze learning using a
hyperdimensional predictive processing cognitive
architecture." 2022.
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Avg. Success Rate

Avg. Episode Length

DK Mem DK Mem
DQN (.00 40.0 100.0 41.14
RnD 100.0 48.5 3.71 2.78
BeBold 100.0 48.0 3.93 2.92
CogNGen | 100.0 08.5 5.48 2.96




General CogNGen

Declarative / Long Term Memory
hippocampus, temporal lobe
Holographic Declarative Memory

R4
Procedural Memory Working Memory
basal ganglia frontoparietal network
Neural Generative Coding HOIOTphiC Buffers
h -
Perception Action
sensory cortices motor cortex

Neural Generative Coding

Neural Generative Coding

N

Common model of cognition:

Functional Basal
Ganglia

World Model

Planner

Free Energy Perceptual

Module(s)

Epi

€ <

—y

_—_ =

N -

- e e -

Laird, JE., et al. "A standard model of the mind:

Toward a common computational framework
across artificial intelligence, cognitive science,

neuroscience, and robotics.” 2017.

Free Energy Common Model of Cognition:

Functional Basal Ganglia

Performs system (task) configuration via
excitation, inhibition, & gating

Memory System

Interacts w/ world model to induce
episodic recalllreplay. Stores triggers &
other high-level key activity vectors

Planner

Interacts w/ world & motor models to
synthesize action plans

World Model

Learns from perceptual & motor modules
an abstract generative model of the
agent’'s environment

I Motor Model

Produces the actions (performs action
selection) & interacts with the planner.

Free Energy

Computes problem-specific free energy
signals (contains the prior model) &
exploration-driving signals (via
interaction w/ the world model)

Perceptual Modules

Learn to encode/map sensory samples of
the environment to a compressed latent

Ororbia, AG., Kelly, MA. "A neuro-mimetic realization of the common model of

wvector space.
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cognition via hebbian learning and free energy minimization." 2023.



CogNGen (red arrow
agent) navigating a
procedurally-
generated multi-room
environment!

Goal is to get to the
green square by
moving and learning
to open doors on the
way!



TABLE II: Robosuite results (5-trial mean/std. dev. reported).

Block Lift Acc R-Stability
BC 100.0 = 0.0 ——
BC-RNN 100.0 £ 0.0 —_—
BCQ 100.0 £ 0.0 —_—
CQL 56.7 + 40.3 ——
HBC 100.0 £ 0.0 —_—
IRIS 100.0 £ 0.0 —_—
DDPG-Demo 63.5 £ 7.8 | 0.340 £ 0.043
ActPC 06.5 + 2.1 0.048 £+ 0.008
Can Place Ace R-Stability
BC 86.0 £ 4.3 ——
BC-RNN 100.0 £ 0.0 —_—
BCQ 62.7T + 8.2 —_—
CQL 22.0+% 5.7 —_—
HBC 01.3+ 2.5 -
IRIS 02.7 0.9 —_—
DDPG-Demo 51.5 £ 3.5 | 0.351 £ 0.079
ActPC 04.0 £ 2.1 0.101 £+ 0.028

\ ActPC beats out

most strong
imitation learning
baselines and gets
close to best ones
(BC-RNN)
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Predictive Coding in Terms
of Spikes

Ballard, D, et al. "A model of predictive coding based on spike timing." 1999.



* Spike-based predictive coding

Pre-spikes  Synapses

Threshold

* Spike emission functions = 0, L1l ) HEHRUN

leaky integrate-and-fire (LIF), 1zhikevich, Hodgkin- Wy (V)

Huxley models o Al | . rﬂﬂ ﬂ o
» Key: activation traces (correspond to g e

concentrations of neurotransmitter bound to By '

synaptic receptors) Wa

ov'
TJ'H —

-

Ororbia, AG. "Spiking neural predictive coding for continually learning from data streams." 2023.

Lime

Post-spikes, 8,

by 1z L5

L
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Step 1

Generate local hypotheses;
deposit hypothesis signals
into error neurons

Pre-spikes

Synapses

---0

LIF Neuron

Inhbitary carry-through synapse
Inhibitory synapse
Excitatory synapse

Excitatory carry-through synapse

Threshold
(¥rw)

Post-spikes, 8,

P

Ly

“Guess”



Step 2

Update neurotransmitter
concentration traces

-==0

Inhibitory carry-through synapse
Inhibitory synapse
Excitatory synapse

Excitatory carry-through synapse

7' (t)




Step 3

Deposit top-down & bottom-up
signals into SNM membrane
(electrical current input)

-=--0

Inh'bitary carry-through synapse
Inhibitory syrapse
Excitatory synapse

Ewcitatory carry-through synapse

i1 (t + At)

' “Correct”
E

1

u
jl(i; + At) U

o




Step 4

Update membrane potential

-==0

Inh'bitary carry-through synapse
Inhibitory syrapse
Excitatory synapse

Excitabory carry-through synapse

® O
vi(t + At) vi(t + At)




Step 5

Produce action potentials
and hyperpolarize

-==-0

Inhibitary carry-through synapse
Inhibitory synapse
Excitatory synapsa

Eecitatory carry-through synapse

@ O
s'(t + At)

s'(t + At)




Go Back to:
(Step 1)

Generate local hypotheses...we
have returned to Step 1 (but a
step forward in time)

-==-0

Inh bitary carry-through synapse
Inhibitory synapse
Excitabory synapse

Excitabory carry-through synapse




Synaptic Plasticity Dynamics

e (For circuit in last several slides, equations apply to any layer £ )
e Simple (error) Hebbian updates; local in space and time

r P =~ WH(E) + (1) - (1))

OE'(t)

Te—g— = —YeE'(t) + (sl(t) : (e“(t))T)




MNIST NotMNIST FMNIST
Model ACC BWT ACC BWT ACC BWT
EWC [51] 0.190 £ 0.030 | —0.357 | 0.186 = 0.020 | —0.361 0.199 + 0.06 —0.350
SI[107] 0.197 £ 0.110 | —0.367 | 0.161 +=0.030 | —0.370 0.198 + 0.100 —0.370
Lwf [58] 0.846 +0.340 | —0.120 | 0.626 +=0.091 | —0.130 0.875 + 0.300 —0.130
IMM [56] 0.951 +0.018 | —0.007 | 0.925+0.011 | —0.006 | 0.950 &+ 0.013 | —0.005
GDumb [&88] 0.978 +=0.09 —0.005 | 0.940 & 0.080 | —0.004 0.973 +=0.09 —0.006
SpNCN 0.735 £ 0.154 | —0.302 | 0.776 £ 0.228 | —0.228 [ 0.8324 £ 0.097 | —0.198
SpNCN-Buf || 0.943 4+ 0.451 | —0.020 | 0.927 +0.331 | —0.008 | 0.951 +0.329 | —0.028
SpNCN-Lat 0.972+0.297 | —0.001 | 0.948 =0.311 | —0.003 0.985 + 0.216 —0.001
Model MNIST Samples
SpNCN

Yes, spiking neural coding is not limited to leaky integrator-and-fire cells...(any
cell dynamics model can be used, e.g., FitzHugh—Nagumo model)



A Possible Pathway: Naturalist
Machine Intelligence



System w/ non-equilibrium steady-state will behave s.t.:
 Its internal density dynamics are conditionally
independent of niche; system state is distinct from niche
* |t continues to self-evidence by returning to non-
equilibrium

Corollary:. Active inference
» Entity changes relationship with its niche via action

Corollary: Mortal computation
« Entity’s “software” cannot be divorced from physical
substrate
* Imperative = remain in a non-equilibrium steady

state (identity)

Machine intelligence should be:
elementary, embodied, enactive, embedded, and
extended (5E Theory)

o

z fomo
(S)
>

I
I
I
[
1
1
[
1
1
1
[
1
1
£ Living System :
1
1
1
1
1
1
1
1
1
1
1
1
1
[

___________________________________

System enclosed by Markov blanket will evolve its
internal generative model to minimize its variational
free energy

Ororbia, AG, Friston, K. "Mortal computation: A foundation for

biomimetic intelligence.” 2023.



* Inference on today’s computers suffers from “memory wall”
Realizing thermodynamic efficiency of computations requires belief
updating in memory

* Pathway for Green Al versus Red Al [Schwartz et al., 2020]

order of attojoules

[~

expended energy

order of picojoules

expended energy

order of nanojoules

f

NN\

expended energy

NAND Flash

=
<
g
T
5
2
5 MW\
&
§
-
I~
N

order of microjoules

Inference/learning on a von Neumann Computer

F(EEE

-
A I
A e
A T
AR T

in-memory biophysical
E ! neural processor (circuit)

memristor crossbhar
In-Memory (Neuromorphic) Computing
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* Benchmarking —> we need to focus on foraging/exploration-centric tasks

* Degree of entanglement between architecture, credit assignment, and
inference

 How much architectural agnosticism are we willing to give up?
* Role of “cognitive architecture prior’ and role of evolutionary processes

* How much neurobiological realism do we need to sufficiently generalize?
How much is too much?

* Enough to realize thermodynamic efficiency & rich temporal encoding properties
and statefulness of neuronal systems (neurorobotics)
 Neuromorphics:

* Low energy required for computation; low energy for communication
* Inputs arrive asynchronously, extreme sparsity



* Benchmarking —> we need to focus on foraging/exploration-centric tasks

* Degree of entanglement between architecture, credit assignment, and
inference

 How much architectural agnosticism are we willipg

* Role of “cognitive archijte ‘G ary processes

* How much neu ly generalize?

How much is to

* Enough to reali . poral encoding properties
and statefulnes:
* Neuromorphics:

* Low energy required for computation; low energy for communication
* Inputs arrive asynchronously, extreme sparsity



 What is the ground-breaking “app” for PC and biological modeling?
* There are barriers to wider-spread adoption of deep learning alternatives

* Model selection and sparsification:
* Can we infer the best model from data using structural adaptation, model
selection?
* Neuromorphic Hardware implementations:
e Analog/memristor circuits?
* |s there anything more exotic to consider, such as organoids?



Sidestepping Limikations of PC mth Other
Forms of Learning?

Hinton, G. "The forward-forward algorithm: Some
preliminary investigations” 2022.

sy()
Ororbia, AG, Mali, A. "The predictive forward-
forward algorithm." 2022

Induces

e, Ororbia, AG. "Contrastive-signal-dependent
plasticity: Forward-forward learning of spiking
neural systems." 2023.
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ngc-learn — Python simulation and design library for computational

cognitive neuroscience, in JAX
* https://github.com/NACLab/ngc-learn
* Supports arbitrary PC circuit design, biological credit assignment
development, and spiking neuronal cell modeling
* Model museum features historical models

NGC

NGC-Lava: (for translating to Intel’s Lava-NC/Loihi 2)
https://github.com/NACLab/ngc-lava

79

NGC-Museum:
https://github.com/NACLab/ngc-museum



https://github.com/NACLab/ngc-learn
https://github.com/NACLab/ngc-museum
https://github.com/NACLab/ngc-lava

Mission: Create learning algorithms and computational :/M/&

: o , . Doctoral Researchers:
architectures for biomimetic systems, motivated by William Gebhardt, Zhizhuo Yang, Mobina Ghorbaninejad,

models of cognition and biological circuitry Faeze Habibi, Viét Diing
* Neurobiological credit assignment
* Predictive coding and processing
* Active inference, biophysical reinforcement learning,
neurorobotics
e Spiking neural networks
e Continual machine, learning
* Neural-based cognitive architectures

* Related Collaborators:
Ben Goertzel (SingularityNet), Karl Friston (UCL/VERSES),
Chris Buckley (Sussex/VERSES), Rajesh P. N. Rao (UW),
Ankur Mali (USF), Daniel Kifer (PSU), C. Lee Giles (PSU),
Hugo Latapie (Cisco), Mary Kelly (Carleton), Brett Fajen (RPI),
Tommaso Salvatori (VERSES), Travis Desell (RIT),
Daniel Krutz (RIT), Gabriel Diaz (RIT), Beren Millidge (Oxford),

Adam Kohan (UMass) n-\I'EI('.Qr-::;-’cech m Meta

NGC NIIr
7 CISCO.

.
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A neural generative coding circuit (NGC;
Ororbia & Kifer 2022, Nature Communications)
shown predicting an image of a digit.

A
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