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Confidence or Uncertainty?



Confidence vs. Uncertainty

Confidence Uncertainty

Model’s certainty about prediction How much model’s prediction is variable
High confidence variance Low uncertainty
Low confidence variance High uncertainty

Examples:
Image 1: (Cat: 0.8, Dog: 0.1, Rabbit: 0.1) - high variance, high confidence, low uncertainty

Image 2: (Cat: 0.4, Dog: 0.35, Rabbit: 0.25) - low variance, low confidence, high uncertainty
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Uncertainty in Machine Learning

1 Model needs to know the unknown
2 High confidence for OOD data
3 Quantifies model’s trust and usefulness

Image: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, Liu et. al (2020)
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Uncertainty in Safety-Critical Domains

(a) Occlusion at a pedestrian crossing (b) Image with an OOD bicyclist
and occlusion due to a curvy road introduces uncertainty

can cause uncertainty1

(a) Motion Planning for Autonomous Vehicles in the Presence of Uncertainty Using Reinforcement Learning, Rezaee et. al (2021), (b) MUAD: Multiple Uncertainties
for Autonomous Driving, a benchmark for multiple uncertainty types and tasks, Franchi et. al (2022)
[1] https://www.iihs.org/news/detail/self-driving-vehicles-could-struggle-to-eliminate-most-crashes
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Types of Uncertainty

• Aleatoric or Data Uncertainty

• Epistemic or Model Uncertainty
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Aleatoric Uncertainty

Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Hullermeier and Waegeman (2020)
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1 Data uncertainty

2 Cannot be reduced

3 More training data - No effect



Epistemic Uncertainty

Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Hullermeier and Waegeman (2020)
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1 Model uncertainty

2 Can be reduced

3 More training data can reduce

4 Used to identify OOD data



Other Types of Uncertainty

Accurate Uncertainty Estimation and Decompositionin Ensemble Learning, Liu, Jeremiah, et al. (2019)
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Other less-explored uncertainties:

1 Parametric - model parameter estimations

2 Structural - model specs to describe data

3 Prediction function bias - systematic bias

4 Distribution function bias - distribution not
capturing data stochasticity



Bayesian Deep Learning

• BNNs learn probability distributions of the weights and activations - this overcomes the
challenges of NN by providing point estimates

• Place priors over network weights
• Given a prior belief p(θ) and likelihood p(D|θ), Bayes’ rule posterior is given by

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

• The denominator is intractable and the posterior predictive distribution can be used

P(y |x ,D) =

∫
P(y |x , θ)P(θ|D)dθ

• The model performance depends on the approximation method
• Requires the training to be modified
• Expensive computations compared to non-Bayesian NNs

Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation, Ulmer et. al (2023)
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Bayesian Deep Learning

• Posterior approximations obtained using dropout, ensembles

• Requires expensive sample for variance predictions

• Model performance depends on approximation methods used

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural networks (2015)
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Ensemble Learning

• Use multiple versions of models or data
• Samples required for estimating uncertainty
• Better performance than BNNs
• Robust to OOD data
• Needs more memory to accommodate the multiple network parameters
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Prior Networks

• Does not require sampling
• Places prior distributions over hierarchical models
• Require OOD data for training
• Suitable for discrete learning scenarios

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior network (2018)
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Evaluation and Calibration

1 Temperature Scaling - softens the NN output
• higher T ⇒ more confident, less calibrated predictions
• lower T ⇒ less confident, more calibrated predictions

P(ŷ) =
ez/T∑
j e

zj/T

where ŷ is the prediction, z is the logit and T is the learned temperature.
2 Expected Uncertainty Calibration Error (UCE) is used to evaluate the model

• NN output is split into M equal sized bins
• Uncertainty values are compared with the values of the bin and placed in appropriate bins
• Bm is the number of items in bin m, n is the total number of items, err(Bm) is the mean

error of bin m and uncert(Bm) is the mean uncertainty of bin m

3 Model with lower UCE value is a well-calibrated model

UCE =
M∑

m=1

|Bm|
n

|err(Bm)− uncert(Bm)|

Laves, Max-Heinrich, et al. ”Well-calibrated model uncertainty with temperature scaling for dropout variational inference.” arXiv preprint arXiv:1909.13550 (2019).
Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q. On Calibration of Modern Neural Networks. In ICML, 2017
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Expected Uncertainty Calibration Error (UCE)

Calibration - adjust model predictions to align with the ground truth

Laves, Max-Heinrich, et al. ”Well-calibrated model uncertainty with temperature scaling for dropout variational inference.” arXiv preprint arXiv:1909.13550 (2019).

Conf vs. Unc | Motivation | Uncertainty | EDL | DER | DEC | Unc in RL | UADQN | CEQR-DQN | 13 / 33



–

Evidential Deep Learning



Evidential Deep Learning (EDL)

• Evidence-collecting process

• More evidence =⇒ high confidence and low uncertainty of predictions

• Can learn evidence variables directly from the data

• Robust to different uncertainty sources

• Requires novel and complex loss function - uses approximation or regularization methods
(e.g. softmax approximation)

• The regularization coefficient needs to be tuned to remove evidence, that is not
misleading, from uncertainty calibration

Evidential Deep Learning to Quantify Classification Uncertainty, Sensoy et. al (2018)
Deep Evidential Regression, Amini et. al (2020)
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Deep Evidential Regression (DER)

• Applies to a continuous regression problem

• Evidential prior distribution is placed over the likelihood function and the network is
then trained to obtain the hyperparameters of this evidential distribution

• No sampling or training on OOD, single model training

• Predicts a uniform distribution for OOD data

• Misleading evidence is minimized for incorrect predictions to increase uncertainty

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep Evidential Regression, (2020)
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Basic Idea of DER

• Priors are placed on the unknown mean and variance of the target distribution
• Mean: µ ∼ N (γ, σ2ν−1) → Gaussian
• Variance: σ2 ∼ Γ−1(α, β) → Inverse − Gamma

• The posterior distribution is obtained by factorizing the estimated distribution as the
NIG distribution (Gaussian conjugate prior):

p(µ, σ2|γ, ν, α, β) = βα√ν

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
− 2β + ν(γ − µ)2

2σ2

}
• The first order moments of the above distribution gives the uncertainties
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E[µ] = γ

Prediction

E[σ2] = β
α−1

Aleatoric Uncertainty

Var [µ] = β
ν(α−1)

Epistemic Uncertainty



Model Learning

The evidential prior distributions are optimized in 2 ways:

1 Maximizing the model fit - analytical solution for intractable model evidence

LNLL
i (w) =

1

2
log

(
π

ν

)
− αlog(Ω) +

(
α+

1

2

)
log((yi − γ)2ν +Ω) + log

(
Γ(α)

Γ(α+ 1
2)

)
This is the NLL of the model evidence, which is a Student-t distribution.

2 Minimizing the evidence on errors

LR
i (w) = |yi − γ| · (2ν + α)

where (2ν + α) is the total evidence. This regularization term imposes a penalty in the
case of a wrong prediction.

3 Total loss is given by: Li (w) = LNLL
i (w) + LR

i (w)
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Benchmark Regression Tests

Benchmark models are outperformed by evidential models for NLL and the inference speed
on all datasets
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Monocular Depth Estimation

Predict the depth of pixels from a high-dimensional RGB image
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Model uncertainty calibration
(ideal y=x)

Evidential entropy on ID and
OOD data



Adversarial Noise

OOD detection from adversarially perturbed inputs
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ϵ is the noise scale, (D) shows the effects of increasing perturbations on the predictions,
error, and uncertainty, for evidential regression



Summary

1 DER is a scalable method for estimating aleatoric and epistemic uncertainty

2 An evidential regularizer enables OOD samples to be penalized

3 Evaluation of DER against state-of-the-art uncertainty estimation models

4 Evaluation of DER calibration on OOD data
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Dempster-Shafer Theory

• Assigns set probability/belief masses
• Evidence for multiple events (any class is likely)
• 3 important functions:

• Probability assignment function (m): a belief mass for each element of the power set

• Belief function (Bel): sum of all the masses of subsets of the set of interest

• Plausibility function (Pl): sum of all the masses of the sets B that intersect the set of
interest A

Sentz, K. & Ferson, S. Combination of Evidence in Dempster-Shafer Theory. (2002).
https://en.wikipedia.org/wiki/Dempster-Shafer theory
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m : P(X ) → [0, 1]

m(ϕ) = 0;
∑

A∈P(X )

m(A) = 1

Bel(A) =
∑

B|B⊆A

m(B)

Pl(A) =
∑

B|B∩A ̸=ϕ

m(B)



Evidential Deep Learning for Classification

• A frame of K mutually exclusive singletons
• Each singleton is assigned a belief mass bk ≥ 0
• Overall uncertainty mass is u ≥ 0

u +
K∑

k=1

bk = 1

• bk is computed from the evidence ek

bk =
ek
S

and u =
K

S

K is the number of classes and S =
∑K

i=1(ei + 1)

Sensoy, M., Kaplan, L. & Kandemir, M. Evidential Deep Learning to Quantify Classification Uncertainty. Arxiv (2018)
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Basic Idea of DEC

• A Dirichlet distribution is fit over the probabilities of a neural network classification
model

• The Dirichlet prior has a probability density function, parameterized by α for K
categories and is given by,

Dir(x |α) = 1

β(α)

K∏
i=1

xαi−1
i

where β(α) =
∏K

i=1 Γ(αi )
Γ(α0)

, α0 =
∑K

i=1 αi and {x1, x2, ..., xK} represent the support for the

K categories and xiϵ[0, 1] where
∑K

i=1 xi = 1.

• The Dirichlet distribution is a conjugate prior of the Multinomial distribution and the
posterior is given by:

P(θ|x) ∝ Dir(X |xnk + αk)
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Model Learning

The evidential prior distributions are optimized in 2 ways:

1 Minimizing the NLL loss (sum of squares loss)

LNLL
i (Θ) =

K∑
j=1

(yij − p̂ij)
2 +

p̂ij(1− p̂ij)

(Si + 1)

where yi j is the one-hot vector of the ground-truth observation class, Si =
∑K

i=1 αi ,
αi = ei + 1, ei is the evidence from the neural network, and p̂k = αk

S .

2 Penalize states that do not contribute to data fit

LR
i (Θ) = KL[D(pi |α̃i )||D(pi | < 1, ..., 1 >)]

where D(pi | < 1, ..., 1 >) is the uniform Dirichlet distribution.

3 Total loss is given by: Li (Θ) = LNLL
i (Θ) + λt LR

i (Θ)
where λt = min(1.0, t/10) ∈ [0, 1] is the annealing coefficient
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EDL For Classification

Sensoy, M., Kaplan, L. & Kandemir, M. Evidential Deep Learning to Quantify Classification Uncertainty. Arxiv (2018)
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Vacuity and Dissonance

• Entropy high in ID and OOD regions
• Dissonance high on boundary (misclassification)
• Vacuity high in OOD region

Hu, Yibo, et al. ”Multidimensional uncertainty-aware evidential neural networks.” Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 9. 2021.
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Vacuity and Dissonance

• Vacuity - Lack of support

u +
K∑

k=1

bk = 1

u in the above equation is the uncertainty mass that represents the vacuity of evidence
• Dissonance - Conflicting evidence

bDiss
X =

∑
xi∈X

(
bX (xi )

∑
xj∈X\xi bX (xj)Bal(xj , xi )∑
xj∈X\xi bX (xj)

)
where Bal(xj , xi ) is the relative mass balance between a pair of belief masses, given by

Bal(xj , xi ) = 1−
|bX (xj)− bX (xi )|
bX (xj) + bX (xi )

Shi, Weishi, et al. ”Multifaceted uncertainty estimation for label-efficient deep learning.” Advances in neural information processing systems 33 (2020): 17247-17257.
A. Josang, J. -H. Cho and F. Chen, ”Uncertainty Characteristics of Subjective Opinions,” 2018 21st International Conference on Information Fusion (FUSION),
Cambridge, UK, 2018

Conf vs. Unc | Motivation | Uncertainty | EDL | DER | DEC | Unc in RL | UADQN | CEQR-DQN | 28 / 33



–

Uncertainty in Reinforcement Learning

https://www.altexsoft.com/blog/reinforcement-learning-explained-overview-comparisons-and-applications-in-business/



Sources of Uncertainty

Stutts, Alex Christopher, et al. ”Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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1 Aleatoric Uncertainty - random traps

2 Epistemic Uncertainty - actions that
neglect exploration such as shortcuts

3 Hinders ability to gain knowledge of
better rewards



Uncertainty-Aware Deep Q Network (UADQN)

• Estimates 50 quantiles and uses random MAP sampling to sample 2 anchor networks.
• Thompson sampling overcomes the exploration-exploitation dilemma and uses epistemic
uncertainty to prioritize transitions to replay.

σ̃2
epistemic =

1

2
Ei∼U{1,N}[yi (θA, s, a)− yi (θB , s, a)]

2

• The action mean is updated for risk-aversion

µ = µ− λσ̃aleatoric

where µ is the action mean, λ is a hyperparameter and σ̃aleatoric is the uncertainty
calculated from the anchor networks

σ̃2
aleatoric = covi∼U{1,N}(yi (θA, s, a), yi (θB , s, a))

• The proposed UADQN model is tested in 5 game environments.

Clements, William R., et al. ”Estimating risk and uncertainty in deep reinforcement learning.” arXiv preprint arXiv:1905.09638 (2019).
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UA-DQN

Clements, William R., et al. ”Estimating risk and uncertainty in deep reinforcement learning.” arXiv preprint arXiv:1905.09638 (2019).
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Calibrated Evidential Quantile Regression in Deep Q Network (CEQR-DQN)

• Closely comparable to UADQN, CEQR-DQN uses evidential deep learning to calculate
uncertainties

Aleatoric: E[σ2] =
β

α− 1
; Epistemic: Var[µ] =

β

ν(α− 1)
;

where α, β and ν are parameters of the evidential distribution.
• Uncertainty is obtained from the 5th and 95th percentiles used to obtain an
evidence-based confidence interval (Linterval)

• The loss function to be minimized is

LEL = Levi + Lcal + Linterval

where Levi is the evidential loss, Lcal is the calibration loss and Linterval is the interval
loss.

• The proposed CEQR-DQN model is tested in 5 game environments
Stutts, Alex Christopher, et al. ”Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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CEQR-DQN

Stutts, Alex Christopher, et al. ”Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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Thank You!
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