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Confidence or Uncertainty?



Confidence vs. Uncertainty

Confidence ‘ Uncertainty

Model's certainty about prediction | How much model’s prediction is variable

High confidence variance Low uncertainty
Low confidence variance High uncertainty
Examples:

Image 1: (Cat: 0.8, Dog: 0.1, Rabbit: 0.1) - high variance, high confidence, low uncertainty

Image 2: (Cat: 0.4, Dog: 0.35, Rabbit: 0.25) - low variance, low confidence, high uncertainty
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Uncertainty in Machine Learning

@ Model needs to know the unknown
® High confidence for OOD data
© Quantifies model's trust and usefulness
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Uncertainty in Safety-Critical Domains

(a) Occlusion at a pedestrian crossing (b) Image with an OOD bicyclist
and occlusion due to a curvy road introduces uncertainty
can cause uncertainty®

(a) Motion Planning for Autonomous Vehicles in the Presence of Uncertainty Using Reinforcement Learning, Rezaee et. al (2021), (b) MUAD: Multiple Uncertainties
for Autonomous Driving, a benchmark for multiple uncertainty types and tasks, Franchi et. al (2022)
[1] https://www.iihs.org/news/detail/self-driving-vehicles-could-struggle-to-eliminate-most-crashes
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Types of Uncertainty

® Aleatoric or Data Uncertainty

® Epistemic or Model Uncertainty
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Aleatoric Uncertainty

@® Data uncertainty
® Cannot be reduced
© More training data - No effect

v
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Epistemic Uncertainty

F. 8
w7
+

@ Model uncertainty + +
® Can be reduced + + <+ O
© More training data can reduce + O
© Used to identify OOD data O

o O

O L.

Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods, Hullermeier and Waegeman (2020)
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Other Types of Uncertainty

Other less-explored uncertainties:

@ Parametric - model parameter estimations
® Structural - model specs to describe data
© Prediction function bias - systematic bias

@ Distribution function bias - distribution not
capturing data stochasticity

Overall Uncertainty

N

Epistemic Aleatoric
Parametric Structural
w (i.e. Model Misspecification)
Prediction Distribution
Function Function
1) G

Accurate Uncertainty Estimation and Decompositionin Ensemble Learning, Liu, Jeremiah, et al. (2019)
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Bayesian Deep Learning

® BNNs learn probability distributions of the weights and activations - this overcomes the
challenges of NN by providing point estimates
® Place priors over network weights
® Given a prior belief p(6) and likelihood p(D|#), Bayes' rule posterior is given by
p(D[6)p(0)
p(6|D) =
O1D) = T Dlo)e(a)d

® The denominator is intractable and the posterior predictive distribution can be used

P(y|x, D) :/P(y]x,G)P(0|D)d9

® The model performance depends on the approximation method
® Requires the training to be modified
® Expensive computations compared to non-Bayesian NNs

Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation, Ulmer et. al (2023)
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Bayesian Deep Learning

® Posterior approximations obtained using dropout, ensembles

® Requires expensive sample for variance predictions

® Model performance depends on approximation methods used
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Ensemble Learning

Use multiple versions of models or data

Samples required for estimating uncertainty

Better performance than BNNs

Robust to OOD data

Needs more memory to accommodate the multiple network parameters

average loss: 0.4844674269257135
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Prior Networks

® Does not require sampling

Places prior distributions over hierarchical models

Require OOD data for training

Suitable for discrete learning scenarios

(a) Confident Prediction (b) High data uncertainty  (c) Out-of-distribution

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior network (2018)
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Evaluation and Calibration

@ Temperature Scaling - softens the NN output
® higher T = more confident, less calibrated predictions
® |lower T = less confident, more calibrated predictions

ez/T
P())= ——
where y is the prediction, z is the logit and T is the learned temperature.

@® Expected Uncertainty Calibration Error (UCE) is used to evaluate the model

® NN output is split into M equal sized bins

® Uncertainty values are compared with the values of the bin and placed in appropriate bins

® B, is the number of items in bin m, n is the total number of items, err(B,,) is the mean

error of bin m and uncert(B,,) is the mean uncertainty of bin m

© Model with lower UCE value is a well-calibrated model

~ 1Bn
UCE = Z Tm|err(Bm) — uncert(Bp)|

Laves, Max-Heinrich, et al. ”Well-calibrated model uncertainty with temperature scaling for dropout variational inference.” arXiv preprint arXiv:1909.13550 (2019).
Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q. On Calibration of Modern Neura/ Networks. In ICML, 2017
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Expected Uncertainty Calibration Error (UCE)

Calibration - adjust model predictions to align with the ground truth

Frequentist Confidence MC Dropout Confidence MC Dropout Uncertainty
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Figure 1: Reliability diagrams (M = 15 bins) for ResNet-101 on CIFAR-100. Top row: Uncalibrated
frequentist confidence (left), and confidence and uncertainty obtained by dropout variational inference
(right). Bottom row: Results from calibration with TS. Dashed lines denote perfect calibration.

Laves, Max-Heinrich, et al. " Well-calibrated model uncertainty with temperature scaling for dropout variational inference.” arXiv preprint arXiv:1909.13550 (2019).
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Evidential Deep Learning



Evidential Deep Learning (EDL)

® Evidence-collecting process

® More evidence = high confidence and low uncertainty of predictions
® Can learn evidence variables directly from the data

® Robust to different uncertainty sources

® Requires novel and complex loss function - uses approximation or regularization methods
(e.g. softmax approximation)

® The regularization coefficient needs to be tuned to remove evidence, that is not
misleading, from uncertainty calibration

Evidential Deep Learning to Quantify Classification Uncertainty, Sensoy et. al (2018)
Deep Evidential Regression, Amini et. al (2020)
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Deep Evidential Regression (DER)

Applies to a continuous regression problem

Evidential prior distribution is placed over the likelihood function and the network is
then trained to obtain the hyperparameters of this evidential distribution

No sampling or training on OOD, single model training
Predicts a uniform distribution for OOD data

Misleading evidence is minimized for incorrect predictions to increase uncertainty

Data, &

+ Images

- Timeseries .

- Feature Vector ,.,/)%
Nal

Neural Network Epistemic

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep Evidential Regression, (2020)
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Basic Idea of DER

® Priors are placed on the unknown mean and variance of the target distribution
® Mean: u~ N (v, 0?v=1) — Gaussian
® Variance: 02 ~ (a, 3) — Inverse — Gamma

® The posterior distribution is obtained by factorizing the estimated distribution as the
NIG distribution (Gaussian conjugate prior):

a+1
prvv (1 28 +v(y — )
P00 8) = e amo? () exp{ ) 2}

® The first order moments of the above distribution gives the uncertainties

E[u] =~ E[o?] = % Var[u] = 7}/(0?_1)
Prediction Aleatoric Uncertainty Epistemic Uncertainty
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Model Learning

The evidential prior distributions are optimized in 2 ways:

@ Maximizing the model fit - analytical solution for intractable model evidence

_1
2
This is the NLL of the model evidence, which is a Student-t distribution.

LN (w) log g —alog() + | a+ % log((yi — v)*v + Q) + log <F(a) ))

I'(oz—F%

® Minimizing the evidence on errors
LE(w) = lyi =7l (v +a)

where (2v + «) is the total evidence. This regularization term imposes a penalty in the
case of a wrong prediction.

© Total loss is given by: Li(w) = LN (w) + LR(w)
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Benchmark Regression Tests

RMSE NLL Inference Speed (ms)

Datasct Dropout Ensembles Evidential Dropout Ensembles Evidential Dropout  Ensemble  Evidential
Boston 297 1019 328 1 1.00 3.06 1016 ] 246 1 0.06 241 1025 235 10.06 324 335 0.85
Concrete | 5.23 1012 6.03 L 058 5851015 | 3.04 L002 306 L0108 3.01 L0.02 299 343 0.94
Energy 1.66 1004 2091029 2061010 199 1002 1381022 1.39 1 0.06 3.08 3.80 0.87
Kingnm | 0.10 L 0.00 0.09 L 0.00 0.09 L 0.00 | -095 L 0.01 -1.201002 -1.24 10.01 324 379 0.97
Naval 0.01 L 000 0.00 L0.00 0.00 L 000 | -380 L0001 -5631005 -57310.07 331 337 0.84
Power 4.02 1004 411 1017 4231009 | 2.80 L 001 279 L 0.04 281 1L 0.07 293 336 0.85
Protein 436 L0.01 4714006 4641003 | 2804000 2831002 2631000 345 368 L18

P 0.62L0.01 0641004 0.61L002| 0.93L001 0941012 0.89 4005 3.00 332 0.86
Yacht 1.11L009 1581048 1574056 | 15540003 LISE021 1031009 299 3.36 0.87

Benchmark models are outperformed by evidential models for NLL and the inference speed
on all datasets
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Monocular Depth Estimation

Predict the depth of pixels from a high-dimensional RGB image
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Conf vs. Unc | otivation Uncertainty EDL | DER | DEC | Unc in RL | UADQN



Adversarial Noise

OOD detection from adversarially perturbed inputs

»
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€ is the noise scale, (D) shows the effects of increasing perturbations on the predictions,
error, and uncertainty, for evidential regression
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Summary

@® DER is a scalable method for estimating aleatoric and epistemic uncertainty
® An evidential regularizer enables OOD samples to be penalized

© Evaluation of DER against state-of-the-art uncertainty estimation models
® Evaluation of DER calibration on OOD data
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Dempster-Shafer Theory

® Assigns set probability /belief masses
e Evidence for multiple events (any class is likely)
® 3 important functions:

® Probability assignment function (m): a belief mass for each element of the power set
m: P(X) —[0,1]

m(@)=0; Y mA)=1

AeP(X)

® Belief function (Bel): sum of all the masses of subsets of the set of interest
Bel(A) = Y m(B)

B|BCA
® Plausibility function (PI): sum of all the masses of the sets B that intersect the set of
interest A
PI(A)= Y m(B)
B|BNA%¢

Sentz, K. & Ferson, S. Combination of Evidence in Dempster-Shafer Theory. (2002).
https://en.wikipedia.org/wiki/Dempster-Shafer_theory
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Evidential Deep Learning for Classification

® A frame of K mutually exclusive singletons
® Each singleton is assigned a belief mass by > 0
® Qverall uncertainty mass is u > 0
K
u—+ Z bk =1
k=1
® b, is computed from the evidence ey
K
b Koand u=—
ko 5 3

K is the number of classes and S = S5 (e; + 1)

Sensoy, M., Kaplan, L. & Kandemir, M. Evidential Deep Learning to Quantify Classification Uncertainty. Arxiv (2018)
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Basic ldea of DEC

e A Dirichlet distribution is fit over the probabilities of a neural network classification
model

® The Dirichlet prior has a probability density function, parameterized by a for K

categories and is given by,
K

Dir(x|a) = 5(104) Hx,.a"*l
i=1

K .
where f(a) = % g = Zlel a;j and {x1,x2, ..., xk } represent the support for the

K categories and x;e[0, 1] where Z,K:1 xj = 1.

® The Dirichlet distribution is a conjugate prior of the Multinomial distribution and the
posterior is given by:
P(8]x) o Dir(X|xnk + k)
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Model Learning

The evidential prior distributions are optimized in 2 ways:
@ Minimizing the NLL loss (sum of squares loss)

K
. ij(1 — pij)
£M©) = 3 vy — oy + DI
jzl / / (Si+1)

where y;j is the one-hot vector of the ground-truth observation class, S; = Zlel Q;j,
a; = € + 1, ¢ is the evidence from the neural network, and py = “&.
® Penalize states that do not contribute to data fit

LF(©) = KL[D(pil@)||D(pi| < 1,....1 >)]

where D(pj| < 1,...,1 >) is the uniform Dirichlet distribution.
© Total loss is given by: £;(©) = LNL(©) + A LF(O)
where \; = min(1.0, t/10) € [0, 1] is the annealing coefficient
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EDL For Classification
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Figure I: Classification of the rotated digit 1 (at bottom) at different angles between 0 and 180
degrees. Left: The classification probability is calculated using the softmax tunction. Right: The
classification probability and uncertainty are calculated using the proposed method.

Sensoy, M., Kaplan, L. & Kandemir, M. Evidential Deep Learning to Quantify Classification Uncertainty. Arxiv (2018)
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Vacuity and Dissonance

1.0 High

=]
un
Uncertainty

- - . 0.0 Low
{a) Entropy (b) Dissonance (c) Vacuity

® Entropy high in ID and OOD regions
¢ Dissonance high on boundary (misclassification)
® Vacuity high in OOD region

Hu, Yibo, et al. "Multidimensional uncertainty-aware evidential neural networks.” Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 9. 2021.
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Vacuity and Dissonance

® Vacuity - Lack of support

K
u—i—Zbk:l
k=1

u in the above equation is the uncertainty mass that represents the vacuity of evidence
® Dissonance - Conflicting evidence

b)[()iss — Z

X,'EX

bX(Xi) ZXJ'EX\X,' bX(XJ')Ba/(Xb Xi)
ZXJEX\X,’ bX ()<J)
where Bal(x;j, x;) is the relative mass balance between a pair of belief masses, given by
|bx (%) — bx(xi)|
bX(XJ) + bX(X,')

Shi, Weishi, et al. ”Multifaceted uncertainty estimation for label-efficient deep learning.” Advances in neural information processing systems 33 (2020): 17247-17257.
A. Josang, J. -H. Cho and F. Chen, "Uncertainty Characteristics of Subjective Opinions,” 2018 21st International Conference on Information Fusion (FUSION),
Cambridge, UK, 2018

Bal(xj,xi) =1 —
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Uncertainty in Reinforcement Learning

state

'| Agent |

reward

. |

-

.

Environment ]4—

https://www.altexsoft.com/blog/reinforcement-learning-explained-overview-comparisons-and-applications-in-business/

action



Sources of Uncertainty

e
il AMBIGUOUS [
4 | UNEXPLORED EXIT:
@ Aleatoric Uncertainty - random traps oL
@® Epistemic Uncertainty - actions that
neglect exploration such as shortcuts Y = i
TAINTY

© Hinders ability to gain knowledge of
better rewards

Stutts, Alex Christopher, et al. "Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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Uncertainty-Aware Deep Q Network (UADQN)

® Estimates 50 quantiles and uses random MAP sampling to sample 2 anchor networks.
® Thompson sampling overcomes the exploration-exploitation dilemma and uses epistemic
uncertainty to prioritize transitions to replay.
~2 1

O epistemic = EEINU{I,N} [Yi(9A> S, a) - YI(HBa S, a)]2

® The action mean is updated for risk-aversion
[ = [t — NG aleatoric

where p is the action mean, A is a hyperparameter and G,jeatoric IS the uncertainty
calculated from the anchor networks

Faeatoric = cOVinug1,n(Yi(0a; 5. 2), yi(05, s, a))

® The proposed UADQN model is tested in 5 game environments.

Clements, William R., et al. "Estimating risk and uncertainty in deep reinforcement learning.” arXiv preprint arXiv:1905.09638 (2019).
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Figure 3. Learning curves over 5 million steps for different agents on the MinAdtar testbed. Shaded areas correspond to the 95% confidence

interval of the mean obtained from 10 training seeds.

Clements, William R., et al. "Estimating risk and uncertainty in deep reinforcement learning.” arXiv preprint arXiv:1905.09638 (2019).
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Calibrated Evidential Quantile Regression in Deep Q Network (CEQR-DQN)

® (Closely comparable to UADQN, CEQR-DQN uses evidential deep learning to calculate
uncertainties
Aleatoric: E[0?] = L; Epistemic: Var[u] = L;
a—1 via—1)
where «, 5 and v are parameters of the evidential distribution.
e Uncertainty is obtained from the 5t and 95" percentiles used to obtain an
evidence-based confidence interval (Liptervar)
® The loss function to be minimized is

EEL = ﬁevi + Ecal + ﬁinterval

where L.,; is the evidential loss, L., is the calibration loss and L;j,tervar is the interval
loss.
® The proposed CEQR-DQN model is tested in 5 game environments

Stutts, Alex Christopher, et al. "Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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CEQR-DQN
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Stutts, Alex Christopher, et al. "Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning.” arXiv preprint arXiv:2402.07107
(2024).
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Thank You!
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