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Companion reading:
Chapters 14, 16, 19, & 20 of Deep Learning textbook



Generative Modeling & Sampling

Task: Given a dataset of images {X1,X2...} can we learn the distribution
of X?

Typically generative models implies modelling P(X).
- Very limited, given an image the model outputs a probability

More Interested in models which we can sample from.
- Can generate random examples that follow the distribution of P(X).

Generative Adversarial Network:
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- Pro: Do not have to explicitly specify a form on P(X|z), z is the latent

space.
- Con: Given a desired image, difficult to map back to the latent variable. ,



Thinking about Learning a Generative Model

Input samples

Learner
Objective
Hypothesis space

Optimizer
3

latent variables

Generated samples

[figs modified from: http://introtodeeplearning.com/materials/2019 6S191 L4.pdf]



http://introtodeeplearning.com/materials/2019_6S191_L4.pdf

Generating Images is Hard!
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Learning Inverse Graphics

Generated images

A
'[Il]’ ~3 Human Annotation
. ole
- 51

E3

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-
Farley, Ozair, Courville, Bengio 2014]

Real vs. Fake

[Zhu et al. 2014]



Concept: Auto-association

Reconstructed data
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The Encoder-Decoder Framework

e Auto-association (auto-encoding)
— Learn a compressed representation of the input, i.e., word2vec
— Bottleneck layer = meaningful latent space

* Can de-couple encoder & decoder
— Each can be complex, different functions

encode decode

Input Hidden Output



Autoencoding: Encoder-Decoder Framework

e Auto-association (auto-encoding)

— Learn a compressed representation of the input, i.e., word2vec
— Bottleneck layer = “meaningful” latent space

* Can de-couple encoder & decoder Reconstructed data

— Each can be complex, different functions EHEH'
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Encoder Decoder
Network — - Network

(conv) (deconv)

latent vector / variables

Attempt to learn identity function

Constrained in some way (e.g., small latent vector
representation)

Can generate new images by giving different latent vectors to
trained network

Variational: use probabilistic latent encoding



Encoder Decoder
Network — - Network

(conv) (deconv)

latent vector / variables

» Attempt to learn identity function

» Constrained in some way (e.g., small latent vector
representation)

» Can generate new images by giving different latent vectors to
trained network

» Variational: use probabilistic latent encoding



The Manifold Hypothesis

Natural data (high dimensional) actually lies in a low dimensional space.

shrinking
franslormalaon

Nice consequence: many datasets that you think might require many
variables/dimensions to describe can actually be explained with only a
few of them (a subset that forms a sort of local coordinate system of

the underlying manifold) 11




Probabilistic Model Perspective

» Data x and latent variables z
» Joint pdf of the model: p(x, z) = p(x|z)p(z)
» Decomposes into likelihood: p(x|z), and prior: p(z)

» Generative process:
Draw latent variables z; ~ p(z)
Draw datapoint x; ~ p(x|z)

» Graphical model:
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Probabilistic Model Perspective

To learn this
model, we could
appeal to Monte
Carlo sampling
or to the calculus
of variations...

» Data x and latent variables z
» Joint pdf of the model: p(x, z) = p(x|z)p(z)
» Decomposes into likelihood: p(x|z), and prior: p(z)

» Generative process:
Draw latent variables z; ~ p(z)
Draw datapoint x; ~ p(x|z)

» Graphical model:
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Probabilistic Model Perspective

» Data x and latent variables z
» Joint pdf of the model: p(x,z) = p(x|z)p(z)
» Decomposes into likelihood: p(x|z), and prior: p(z)

» Generative process:
Draw latent variables z; ~ p(z)
Draw datapoint x; ~ p(x|z)

Not sure if a learnable

: » Graphical model:
generative model...

( )

...50...we ‘re
going to develop
a variational
inference
scheme using
...0r an intractable your neural

waste of time. \_ Nj building blocks!




» Goal: Build a neural network that generates digits
from random (Gaussian) noise The variational

» Define two sub-networks:| Encoderjand Decoder distribution!

» Define a Loss Function
> A neural network gp(z|x)
> Input: datapoint x (e.g. 28 x 28-pixel digit)

» QOutput: encoding z, drawn from Gaussian density with
parameters 6

> |z| < |x|

y4

T

Encoder q(z|x)

!

» Data: x




» Goal: Build a neural network that generates digits
from random (Gaussian) noise

» Define two sub-networks: Encoder and
» Define a Loss Function

> A neural network py(x|z), parameterized by ¢

» Input: encoding z, output from encoder

» Qutput: reconstruction X, drawn from distribution of the data
» E.g., output parameters for 28 x 28 Bernoulli variables

Z

|

Decoder p¢(x|z)

!

Reconstruction: X




» X is reconstructed from z where |z| < |X|
» How much information is lost when we go from x to z to X7
The Loss:

> Measure this with reconstruction log-likelihood: log py(x|z)

» Measures how effectively the decoder has learned to
reconstruct x given the latent representation z

» Loss function is negative reconstruction log-likelihood +
regularizer

» Loss decomposes into term for each datapoint:

N

L(0,¢) = > _ 1i(0,0)

=1

» Loss for datapoint x;:

’f(ga Cb) = _E2mq9(2|x,-) [ |og p¢,(X;|Z)] + KL(qG(lefN ’p(Z))
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The Cost: L(6,¢) =) ( — B, gy(21x) | 108 Po(xil2)] + KL(%(Zle)HP(Z)))

i=1



Neural Variational Inference (NVIL)

* J|dea: Teach neural net to approximate the posterior p(z/x)
— g(z[x) with ‘variational parameters’ ¢
— One-shot approximate inference
— Also known as a recognition model

* Construct estimator of the variational (evidence) lower bound (ELBO)
* Can optimize jointly w.r.t. ¢ jointly with 8 -> Stochastic gradient ascent

D, KL-Divergence >= 0 depends on how good q(z|x) can approximate p(z|x)

Recall from the start of the semester:

KL Divergence:
Plz)
Q(z)

DkL(P||Q) = Ex~p llﬁg ] = Ex~p [log P(z) — log Q(z)] . (3.50)

Gaussian KL Divergence:

. ~N(u, o
KL( B 1 o 0_12+(H1_H2)2 1 p (Ml 1)
p,q) = log 51 T ) q~ N(u2,02)
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Not sure if optimizing log
likelihood... Note: this form is
in terms of log

likelihood

53 oz p(x/2)] | K Lia(2) (e

bound!

Interpreting the bound:

« Approximate posterior distribution g(z|x): Best match to true posterior
p(z|x), one of the unknown inferential quantities of interest to us.

« Recongtruction cost: The expected log-likelihood measures how well
samples from q(z|x) are able to explain the data x.

« Penalty: Ensures that the explanation of the data g(z|x) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.



The Variational Auto-Encoder

« Afeed forward NN + Gaussian 6g(2 | ) = N(2; po(z),0.())
- s :

q,(x|2)

covariance.

| pp(x]2) Hz~N.0)

» For illustration z one dimensional x 2D
« Want a complex model of distribution of x given z

Samplin
o Samplng

Learning the parameters ¢ and 6 via backpropagation

Metwork
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Fix.) =gz llog p(xl2)| | KLia(2) (e

Approx. Posterior Penalty

Interpreting the bound:

« Approximate posterior distribution q(z|x): Best match to true posterior
p(z|x), one of the unknown inferential quantities of interest to us.

« Recongtruction cost: The expected log-likelihood measures how well
samples from q(z|x) are able to explain the data x.

« Penalty: Ensures that the explanation of the data g(z|x) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.



Putting It All Together!

Prior p(z) ~ N(0,1) and p, q Gaussian, extension to dim(z) > 1 trivial

Cost: Regularisation

P ﬂ We use mini batch gradient
-Dx. (g(zlk)lip(z)) = % ¥ (1 +log(al") — u — a;;'f) decent to optimize the cost
j=1 function over all x® in the mini

Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling batch
Machine Learning Group Machine Learning Group . -
Universiteit van Amsterdam Universiteit van Amsterdam C D‘St . Rep rCl d 0] Ctl Dn
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Abstract ~log(p(x"1z")) = 2: ~log(a?) + ——— Least Square for constant
How can we perform efficient inference and learning in directed probabilistic j:] 2 20’{. variance
models, in the presence of continuous latent variables with intractable posterior

distributions, and large datasets? We introduce a stochastic variational inference

and learning algorithm that scales to large datasets and, under some mild differ-

entiability conditions, even works in the intractable case. Our contributions are

two-fold. First, we show that a reparameterization of the variational lower bound

yields a lower bound estimator that can be straightforwardly optimized using stan-

dard stochastic gradient methods. Second, we show that for i.i.d. datasets with

continuous latent variables per datapoint, posterior inference can be made espe-

cially efficient by fitting an approximate inference model (also called a recogni-

tion model) to the intractable posterior using the proposed lower bound estimator.

Theoretical advantages are reflected in experimental results.

1 Tutundantinea



Issue: Backprop and Sampling

Training the Decoder is easy, just
standard backpropagation.

How to train the Encoder?

- Not obvious how to apply gradient
descent through samples.

KLIN (X)), (X ))INV

(0. 1) )

Sample = from NV (p( X)), X (X))

Encoder

()

1

X
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X =7

KLIN (1u(X). S(X))[|N(0,1)]

Decoder
()

A

sample = from N (p(X), X( X))

Encoder
(@)
A

X

But...we have a
problem!



| X - f(2)II°

KLIN (p(X), (X)) IN(0, )]

Decoder
()

A

sample = from N (p(X), X( X))

?? Backprop
through numpy’s
Gaussian RNG??



The Reparameterization ‘Trick’

We want to use gradient descent to learn the model’s
parameters

Given z drawn from gy(z|x), how do we take derivatives of (a
function of) z w.r.t. 67

We can reparameterize: z =+ 0 ®¢€
e ~N(0,1), and @ is element-wise product
Can take derivatives of (functions of) z w.r.t. pand o

Output of gy(z|x) is vector of u's and vector of o's



The Reparameterization Trick

KLN (p(X). 2(X))||N(0,1)]] | Decoder

A

Sample ¢ from A((). [} ‘

z ~ N(y, o) is equivalent to
u+0 - g wheree~N(0,1)



Fantasies/Dreams of the VAE

* VAEs can disentangle potential factors of variation
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Issues/Limitations with VAEs

* Images are blurry (compared to models based on GANs, for
example)

— Result of likelihood objective? (places probability mass on training
images and nearby points, which include blurry images)

* Has tendency to ignore input features that occupy few pixels or that cause only
small change in brightness of pixels (that they occupy)

— Uses only small subset of latent variables? (struggles to find enough
transformation directions to match factorized prior over z)



VAE DRAW
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Simple Autoencoder Variational Autoencoder



A class-conditional VAE
provides labels to both encoder
and decoder
* Since latent code z no
longer has to model data
category, can focus on
modeling stylistic features

Class-Conditional VAE

Z Y
7\
H log o
N
X Y
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Enter the Generative Adversarial Network
(the GAN)

Generator (G) that learns the real data distribution to generate fake
samples

Discriminator (D) that attributes a probability p of confidence of a
sample being real (i.e. coming from the training data)

Training data Rey,
Sam
Discriminator Is sample real?
D
\e
Generator m'

Noise —— ?-a\‘-e'
G




GAN Objective (Evaluation)

Both models are trained together (minimax game):
= G: Increase the probability of D making mistakes
= D: Classify real samples with greater confidence

G slightly changes the generated data based on D’s feedback

minmax V (D, G) = E;.p,.. m)[logD x)| + E.p, (2)log(l — D(G(2)))].

Ideal scenario (equilibrium): G will eventually produce such realistic

samples that D attributes p = 0.5 (i.e. cannot distinguish real and fake
samples)

¥y




GAN Optimization

for number of training iterations do

for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior Pg(2).
e Sample minibatch of m examples {x("),... , (")} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [logD () +10g (1- D (¢ (=2)))].

1=

end for

e Sample minibatch of m noise samples {z(1), ... (")} from noise prior Pg(2).
e Update the generator by descending its stochastic gradient:

m

Vgg;;log (1 — D (G (zm))) :

end for

| I I | |



Conditional GANs

G and D can be conditioned by additional information y
Adding y as an input of both networks will condition their outputs
y can be external information or data from the training set

Training data '?@a/\‘
I
Dl

] o Is sample real, given
Discriminator y?

y
D
Generator e 50
,/’/"’ G

y



Conditional GANs

S S e

y = Senior —

.-~ 2 4 - ’ -
y = Mouth open — n , .

Gauthier, 2015



Deep generative models are distribution transformers

Prior distribution Target distribution




Deep generative models are distribution transformers

o it}

(Gaussian noise

2~ N(0,1) "’

Synthesized image



Deep generative models are distribution transformers

(Gaussian noise

2z~ N(0,1) ‘

Synthesized image



Generative Aadversarial Networks Are Distributional Transformers!

(Gaussian noise

2z~ N(0,1)

: Synthesized image
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Random code

Generator

fake image

© aleju/cat-generator [Goodfellow et al. 2014]
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Random code

-
D :l—» Real (1) or
Ll fake (0)?

Generator Discriminator

fake image

A two-player game:
e ( tries to generate fake images that can fool D.

* D tries to detect fake images.

4
7

[Goodfellow et al. 2014]



G(z)

Zu —I:G::I- @ ~|::D:|—> fake (0.1)

Random code Generator Discriminator
fake i |mage

mm m@( ﬂﬁiog(l—D(G(z))l

[Goodfellow et al. 2014]



G(z)

i I

Random code Generator Discriminator
fake i |mage

:|—> real (0.9)

mm m@( ﬂﬁiog(l—D(G(z)):ﬁilog D(x)f

[Goodfellow et al. 2014]



G(z)

ﬁ{c}mﬂ»

Random code
Generator fake | |mage Discriminator

:|—> real (0.9)

real image
0

Learning objective (GANS)

m(}nmgx Ellog(1—D(G(2))+log D(x)]

[Goodfellow et al. 2014]



GANSs Training

Z G(z)
| 1

u —EG D :|—> real or fake?
Ll Ll

Discriminator

Generator

G tries to synthesize fake images that fool D

D tries to identify the fakes

- Training: iterate between trajining D and G with backprop.
1

- Global optimum when G reproduces data distribution.

[Goodfellow et al., 2014]



Generative Adversarial Network

Learner
Objective Critic
min max E;[log(1-D(G(2))]+Ez[log D(z)] D:x—[0,1]
Data — ¢« P _ —

Hypothesis space Sampler

Deep nets G and D s 2 = ¥
Optimizer

Alternating SGD on G and D




DCGAN

[Radford, Metz, Chintala 2015]




DCGAN

[Radford, Metz, Chintala 2015]




Problems with GANs

1. Training instability

o Good sample generation requires reaching Nash Equilibrium in the
game, which might not always happen

2. Mode collapse

o When G is able to fool D by generating similarly looking samples
from the same data mode

3.  GANs were original made to work only with real-valued, continuous
data (e.g. images)

o Slight changes in discrete data (e.g. text) are impractical



Evaluation is Really Hard!

=  What makes a good generative model?

m Each generated sample is indistinguishable from a real sample




QUESTIONS?
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