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On Representation Learning

Alexander G. Ororbia |l
Introduction to Machine Learning
CSCI-736
2/4/2025

Companion reading:
Chapter 15 of Deep Learning textbook
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THE SPACE OF NEURAL ARCHITECTURES



A mostly complete chart of Deep zoo!
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Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)
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What is Representation Learning?

* Learn features automatically

— Find a transformation of raw data input to a representation / space
that can be effectively exploited in machine learning tasks

* Can be viewed as complementary to machine learning

— “Automatic” pre-processing (or automated feature engineering)

 What makes one representation better than another?

— Good representation = one that makes a subsequent learning task
easier (choice of representation depends on the choice of
subsequent learning task)

Feature Learning
SRR Q Represent;tzb-> algorithm




Why?

* Intelligent systems need:
— Knowledge (constraints/priors)
— Learning (optimization/search)

— Generalization
(guessing where probability mass concentrates)

— Ways to fight off curse of dimensionality
(exponentially many configurations of variables to consider)

— Needs to disentangle underlying explanatory factors
(making sense of data)



Good features essential for successful ML: 90% of effort

raw represented
input " ' by useful - '

data features

MACHINE
LEARNING

Handcrafting features vs learning them

Good representation?
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(Courtesy of Yoshua Bengio)



How do humans qgeneralize
from very few examples?

* They transfer knowledge from previous learning:
Abstract (i.e. deep) representations

Explanatory factors
* Previous learning from: unlabeled data

+ labels for other tasks

(Courtesy of Yoshua Bengio)



Computer Vision is Hard




How is Computer Perception Done?

Object
detection
Image Low-level Recognition
vision features
Audio
classification : ik
Audio Low-level Speaker
audio features identification
Helicopter
control

Low-level state
features Action

Helicopter



How is Computer Perception Done?

Object D &
detection - '
Low-level "
visic?n feeatﬁres Recognition
Clasi Problems of hand-tuned features

1. Needs expert knowledge
2. Time-consuming and expensive

Helic

3. Does not generallze to other domains
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In the context of a deep ANN:
Training w/ supervised criterion
naturally leads to representation
at every hidden layer (moreso
near top hidden layer) taking on
properties that make
discriminative/task-centric
learning easier

Output
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Mapping
Output Output from
features
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Mapping Mapping Most
QOutput from from complex
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Hand- Hand-
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program features
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Input Input Input Input
Rule-based Classic Representation Deep
syslems machine learning learning

learming

Linear
classifier/regressor

Representation =
set of transforms
w/in ANN



‘Deep Architectures are More
Expressive "

Theoretical arguments:

pa—

Logic gates

2 layers of =4 Formal neurons = universal approximator

RBF units

RBMs & auto-encoders = universal approximat

Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 200/, Bengio &
Delalleau 2011, Braverman 2011)

Some functions compactly

represented with k layers may
require exponential size with 2

layers

(Courtesy of Yoshua Bengio)



Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

Layer 2
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Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction

(Courtesy of Yoshua Bengio)



The Problem of Representation Learning

* Representation learning problems face trade-off between preserving as
much information about input (as possible) and attaining nice
properties

— Models (supervised or unsupervised) have main training objective but learn a
representation as a “side effect”

* Offers pathway to facilitate semi-supervised learning
— Hypothesis: unlabeled data can be used to learn a good representation

P (X | Parents(X))

P (X|Zy, ... Z,)



The Problem of Representation Learning

* Representation learning problems face trade-off between preserving as
much information about input (as possible) and attaining nice
properties, e.g., might want things like independence of detectors

* Often add constraints to shape representation in some cases

— Density estimation — encourage elements of representation/latent vector z to be
independent (distributions w/ more independencies are easier to model)

Common cause Common effect
Y: Project due X: Raining
X: Newsgroup Z: Ballgame

busy
Z: Lab full

Y: Traffic



Representations Can Be Acquired
through Multi-Task Learning




Representations Can Be
Acquired by Mapping
Across Encodings of

Modalities/Variable Sets

&Ir—space

1y —space

— s e () pairs in the training set
— [, : encoder unction for x
= = == [, : encoder function for y
LT » Relationship between embedded points within one of the domains

gy \[2s hetween representation spaces






Unsupervised Feature Learning

Find a better way to represent images (or low-level data
in general) than pixels (or low-level/raw sensory features).
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