f"'Lka“|'-‘*l'I-‘.;,"'~

4%

AUTE g

e

7
g

.\' .-'I

! N
x...-"n"j- |'|__|:-,'|'|l‘lll."'

On Deep Learning

Alexander G. Ororbia |l
Introduction to Machine Learning
CSCI-736
1/23/2025

Companion reading:
Chapter 6-8 of Deep Learning textbook

Artificial Neural Networks (ANNs): Neurobiological Motivations

Human brain = a good candidate learning
algorithm

Evidence of layered architectures in neuro-
scientific research (i.e., cortical structures)

Early success of specialized yet deep
architectures

Convolutional Networks, NeoCognitron

neuron cell body

N nucleus

=

synapse

axon of
previous axon

neuron
neuron cell body \

axon dendrites of
tips ~ nextneuron

synapse electrical
signal

dendrites

NOT SURE IF MAGHINE LEARNING

E) fix)
T Hi(x) %
GO000000000)

OO0 QOO0 « OOCO0)
(a) Linear model (b) Single layer (¢) Kernel SVM
architecture neural network architecture

architecture

Most of machine learning models can be viewed as
a type of ANN...if you squint hard enough...

Face
Node

e e e
KX
1Y
=l e
o S5

.
R 1 :,..._u.f.y
QQVOE
e e [Pl

St '-I- -.-‘
e SR

- 0
Ly

& =

6

o

i S PATS ..w..____i
O V."_m.iv., v._..__.__ﬂ_. A

. £
ofeloJetoYeto}e
S W . o el b g
R | RN

SosTREy

s [t PRI I B e T
1- - | * -rln

.....,
el L i

A e o e e
R T | A e A

A Recipe for

Background : :
® Machine Learning

1. Given training data:

{CL’@, Y, ?J',\;l

4. Train with SGD:

(take small steps
opposite the gradient)

B(H‘l) = B(t) — ntVE(fe(fﬂz)a yz)

~ Ve fo(xi), y;)

Reverse Mode Differentiation

* Application of the chain-rule from
(vector) calculus

* Can view ANNs at level of processing
elements (PEs)—neuronal graph

— Follow dot-arrow diagram to get partial
derivative scalars

— Limited flexibility, but simple to
understand

* Canview this at lowest level—
computation graph
— Follow graph of operators & get partial

derivatives using sub-rules (sum rule,
product rule, etc.)

— Highly flexible
— Tools that do this:

* Theano:
http://deeplearning.net/software/theano/

* TensorFlow: https://www.tensorflow.org/

0.5

|
0.5

|
0.5

Deep calculus!

1.

4.

Approaches to Differentiation

Finite Difference Method
- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x
Symbolic Differentiation
- Note: The method you learned in high-school
- Note: Used by Mathematica /| Wolfram Alpha [Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets

- Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

Automatic Differentiation - Forward Mode
- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x); with respect to one input x: in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

The Finite Difference Method

f(+h) - f(z)
h

) _ iy
dx 5
The centered finite difference approximation is: =
0 -d;)—J(O0 —¢€-d;
ai.J(t?) ~ IO Fedi) —J(6 ¢ di))

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1.

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

A

Backpropagation of Errors

WHITE BOARD 'I'IE!'_

Just a lil bit of white
board time!

10

The Vanishing Gradient Problem

* Solving credit assignment problem with back-
propagation too difficult

— Difficult to know how much importance to accord to
remote inputs (Bengio et al., 1994)

— Information passed through a chain of multiplications
back through network

* Any value slightly less than 1 in hadamard product, and
derivative signal quickly shrinks to useless values (near zero)

— Learning long-term dependencies in temporal
sequences becomes near impossible

* Complementary problem: Exploding gradients

— Any value greater than 1 in hadamard, derivative signal
increases dramatically (numerical overflow)

Random Parameter Initializations

Classical approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

* Fan-in-Fan-out (number inputs, number output)
— Calibrate by variances of neuronal activities

e Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for ReLU activations)

* Orthogonal Initialization
— Use Singular Value Decomposition (SVD) to find initial weights
* |dentity Initialization / Constraint (for RNNs)

— Does not always work unless constraint is enforced

* Or otherintelligent methods?
— Greedy layer-wise pre-training (we will go over this later in the course!)

Extra Content

	On Deep Learning
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Reverse Mode Differentiation
	Approaches to Differentiation
	The Finite Difference Method
	Backpropagation of Errors
	The Vanishing Gradient Problem
	Random Parameter Initializations
	QUESTIONS?
	Extra Content

