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On Deep Learning

Alexander G. Ororbia |l
Introduction to Machine Learning
CSCI-736
1/23/2025

Companion reading:
Chapter 6-8 of Deep Learning textbook



Artificial Neural Networks (ANNs): Neurobiological Motivations

Human brain = a good candidate learning
algorithm

Evidence of layered architectures in neuro-
scientific research (i.e., cortical structures)

Early success of specialized yet deep
architectures

Convolutional Networks, NeoCognitron
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NOT SURE IF MAGHINE LEARNING
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(a) Linear model (b) Single layer (¢) Kernel SVM
architecture neural network architecture

architecture

Most of machine learning models can be viewed as
a type of ANN...if you squint hard enough...
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A Recipe for

Background : :
® Machine Learning

1. Given training data:

{CL’@, Y, ?J',\;l

4. Train with SGD:

(take small steps
opposite the gradient)

B(H‘l) = B(t) — ntVE(fe(fﬂz)a yz)



~ Ve fo(xi), y;)



Reverse Mode Differentiation

* Application of the chain-rule from
(vector) calculus

* Can view ANNs at level of processing
elements (PEs)—neuronal graph

— Follow dot-arrow diagram to get partial
derivative scalars

— Limited flexibility, but simple to
understand

* Canview this at lowest level—
computation graph
— Follow graph of operators & get partial

derivatives using sub-rules (sum rule,
product rule, etc.)

— Highly flexible
— Tools that do this:

* Theano:
http://deeplearning.net/software/theano/

* TensorFlow: https://www.tensorflow.org/
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Deep calculus!




1.

4.

Approaches to Differentiation

Finite Difference Method
- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x
Symbolic Differentiation
- Note: The method you learned in high-school
- Note: Used by Mathematica /| Wolfram Alpha [ Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets

- Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

Automatic Differentiation - Forward Mode
- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x); with respect to one input x: in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)




The Finite Difference Method

f( +h) - f(z)
h

) _ iy
dx 5
The centered finite difference approximation is: =
0 -d;)—J(O0 —¢€-d;
ai.J(t?) ~ IO Fedi) —J(6 ¢ di))

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1.

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon
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Backpropagation of Errors

WHITE BOARD 'I'IE!'_

Just a lil bit of white
board time!
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The Vanishing Gradient Problem

* Solving credit assignment problem with back-
propagation too difficult

— Difficult to know how much importance to accord to
remote inputs (Bengio et al., 1994)

— Information passed through a chain of multiplications
back through network

* Any value slightly less than 1 in hadamard product, and
derivative signal quickly shrinks to useless values (near zero)

— Learning long-term dependencies in temporal
sequences becomes near impossible

* Complementary problem: Exploding gradients

— Any value greater than 1 in hadamard, derivative signal
increases dramatically (numerical overflow)



Random Parameter Initializations

Classical approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

* Fan-in-Fan-out (number inputs, number output)
— Calibrate by variances of neuronal activities

e Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for ReLU activations)

* Orthogonal Initialization
— Use Singular Value Decomposition (SVD) to find initial weights
* |dentity Initialization / Constraint (for RNNs)

— Does not always work unless constraint is enforced

* Or otherintelligent methods?
— Greedy layer-wise pre-training (we will go over this later in the course!)






Extra Content
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