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Better Form Your Teams!

 |If you have not already, your teams need to be formed by this Friday,
January 24 by 11:59am (noon!)
« Otherwise, you shall be randomly assigned team members/to a team

« Start figuring out your projects — proposal will be due and you will need to present
what your team is doing!

« Starting next week, teams will be presenting on our weekly topic
(Thursday)

« Team will be assigned this Friday/Saturday
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Clustering Strategies

* K-means
— lteratively re-assign points to the nearest cluster center

* Agglomerative clustering

— Start with each point as its own cluster and iteratively
merge the closest clusters

* Many kinds of clustering: mean-shift clustering,
spectral clustering, etc.
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The Machine Learning (ML) Framework

* Apply a prediction function to a feature representation of
the image to get the desired output:

f(EJ) = "apple’
f(Rd) = “tomato”

() = cow”



The Machine Learning (ML) Framework

y = 1(x)
IR

output  prediction Input
function features

« Training: given a training set of labeled examples
{(X4,¥4), ---, (Xn,YN)}s €Stimate the prediction function f by
minimizing the prediction error on the training set

« Testing: apply f to a never-before-seen test example x and
output the predicted value y = f(x)
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Many classifiers to choose from

e SVM

e Artificial neural networks Which is the best one?
* Naive Bayes

* Bayesian network

* Logistic regression

 Randomized Forests

* Boosted Decision Trees

* K-nearest neighbor

« RBMs/Harmoniums

* Etc.



Recognition Task and Supervision

* Images in the training set must be annotated with the
“correct answer” that the model is expected to produce

Contains a motorbike




Classification

» Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision
boundaries ,

X2




Classifiers: Nearest neighbor

m B ®
) ® .
Training <> Test % Tra|n|r|1g
examples L] example examples
from class 1 from class 2
]
B ®
o ®

f(x) = label of the training example nearest to x

« All we need is a distance function for our inputs

* No training required!



Linear Regression
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Logistic regression has a learned parameter vector 6.
On input X, it outputs:

he(x) = o(0'x)
1
1 4+ exp(—6'x)

where o(z) =1/(1 + exp(—=2))

X1
Draw a logistic X5 |
regression unit ho(x) = —
as: 1 4 exp(—607Tx)
X3
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Classifiers: Logistic Regression

Maximize likelinood of
label given data,
assuming a log-linear
model

Height

X2

x1

Pitch of voice



Comparison

assuming x in {0 1}
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What to Remember about Classifiers

* No free lunch: machine learning algorithms are tools, not dogmas
* Try simple classifiers first

* Better to have smart features and simple classifiers than simple features
and smart classifiers

* Use increasingly powerful classifiers with more training data (bias-
variance tradeoff)
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Dimensionality Reduction

Data space

Encoder or Projector operator

7
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RF>R" m=1,23
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Some space -

“can have complex geometry and topology

“*does not have to be part of R?

“*simplest case: m-dimensional linear subspace in R?

« Dimensionality reduction examples:

PCA, ICA,

Isomap,

Locally linear embedding (LLE)
Multidimensional scaling
t-distributed stochastic nearest
neighbor embedding (t-SNE)
Neural approaches
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Some Areas We Will Study Together

* Representation learning

* Generative models

* Variational inference

* Reinforcement learning

* Recurrence and temporal learning

* A small dose of brain-inspired computing
* Diffusion models

* Language models, transformers



Questions?



References

* Slides/content were adapted from:

— “Deep Learning” (Machine Learning Basics, Chapter 5,
Goodfellow et al., 2016)

— “An Overview of Machine Learning” (Yi-Fan Chang, 2011)
— “CSE 446 Machine Learning” (intro) (Pedro Domingos)

— “Feature learning for image classification” (Kai Yu and
Andrew Ng)

— “Machine Learning” (Computer Vision) James Hays, Brown
* Andrew Ng’s Machine Learning course/lectures:

— http://openclassroom.stanford.edu/MainFolder/CoursePage.
php?course=MachinelLearning

* Data Mining textbook : “Data Mining: Concepts and Techniques,
Third Edition (The Morgan Kaufmann Series in Data
Management Systems)” Han et al. 2011



http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning

Some Machine Learning References

 General
— Tom Mitchell, Machine Learning, McGraw Hill, 1997

— Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, 1995

e Adaboost (to learn about Boosting)

— Friedman, Hastie, and Tibshirani, “Additive logistic regression: a statistical view of
boosting”, Annals of Statistics, 2000

e SVMs

— http://www.support-vector.net/icml-tutorial.pdf
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