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Independence
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Two events are independent, statistically independent, or stochastically
independent if occurrence of one does not affect
probability of occurrence of the other

Similarly, two random variables are independent if realization of one
does not affect probability distribution of other



(Absolute) Independence

A and B are independent iff (Note: following are equivalent)
P(AIB)=P(A) or P(B|A)=P(B) or P(A B)=P(A)P(B)
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P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

32 (23 * 4 (Weather)) entries reduced to 12 (23 + 4 (Weather))

For your

Absolute independence is powerful, but rare.

review!



Conditional Independence
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Two events x and y are conditionally independent given a third event z if
occurrence of x and occurrence of y are independent events in their
conditional probability distribution given z

In other words, x and y are conditionally independent given z if and only if (iff),
given knowledge that z occurs, knowledge of whether x occurs provides no
information on likelihood of y occurring, and knowledge of whether y occurs

provides no information on likelihood of x occurring



Conditional Independence

If | have a cavity, probability the probe catches doesn't depend on whether
| have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

The same independence holds if | haven't got a cavity:

(2) P(catch | toothache,—~cavity) = P(catch | ~cavity)

Catch is conditionally independent of Toothache given Cavity:

(3) P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Equivalent statements:

P(Toothache | Catch, Cavity) = P(Toothache | Cavity) For your
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

review!



Conditional independence

We can now write out the full joint distribution as:

P(Toothache, Catch, Cavity)

= P(Toothache, Catch | Cavity) P(Cavity) [/ product rule
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) // cond. ind.

In many cases

Use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to
linearin n

Conditional independence

Our most basic and robust form of knowledge about uncertain For your
environments

review!



Bayes, in English Please?

« What does Bayes’ Formula helps tofind?

« Helps us tofind:
P(B|4)

« By having already known:

P(A ‘ B) Thomas Bayes, 1701-1761
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Bayes' Rule

Product rule: P(aab) = P(a | b) P(b) = P(b | a) P(a)
= Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
or in distribution form
P(Y|X) = P(X|Y) P(Y) / P(X) = a P(X|Y) P(Y)

Causal Probability (useful for diagnostics):

P(Cause | Effect) = P(Effect|Cause) P(Cause) / P(Effect)
E.g., let M be meningitis, S be stiff neck:

P(m|s) = P(s|m) P(m) / P(s) = 0.8 x 0.0001 / 0.1 = 0.0008

Note: posterior probability of meningitis still very small!



Summary of Probability

* Probability is rigorous formalism for uncertain knowledge

* Joint probability distribution specifies probability of
every atomic event (in sample/event space)

* Queries can be answered by summing over atomic events

* For nontrivial domains, we must find ways to reduce joint
probability distributional search space

Independence & conditional independence = your tools for reducing
joint probability distribution table size

* Note: These ideas/axioms apply equally well to
vector/matrix variables



Probability allows us to build models of
stochastic, data-generating processes....
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Gaussian Linear State Space Model Latent Gaussian Cox Point Process
Kalman Filter
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Probabilistic graphical models (PGMs)
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The venerable
variational
autoencoder....

....a heural PGM.
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