

Fundamentals of Probability

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/4/2024

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- noisy sensors (traffic reports)
 uncertain (non-deterministic)
- uncertain (non-deterministic) action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Set of actions:

 ${A_1, A_2, ..., A_t, ..., A_T}$

Hence a purely logical approach either

- 1. risks falsehood: "A25 will get me there on time", or
- leads to conclusions that are too weak for decision making: "A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

A₁₄₄₀ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...

Probability in Context

Probability theory

- Branch of mathematics concerned with analysis of random phenomena
 - *Randomness*: a non-order or non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination
- Central objects of probability theory are: random variables, stochastic processes, and **events**
 - Mathematical abstractions of non-deterministic events or measured quantities that may either be single occurrences or evolve over time in an apparently random fashion

Uncertainty

- A lack of knowledge about an event
- Can be represented by a probability
 - Ex: role a die, draw a card
- Can be represented as an error

A statistic (a measure in **statistics**)

- Can use probability in determining that measure

Why? Probability allows us to build models of stochastic, data-generating processes....

Gaussian Linear State Space Model Kalman Filter

 $z_t \sim \mathcal{N}(z_t | A z_{t-1}, \sigma_z^2 I)$

 $y_t \sim \mathcal{N}(y_t | Bz_t, \sigma_y^2 I)$

Latent Gaussian Cox Point Process $x \sim \mathcal{N}(x|\mu(i,j), \Sigma(i,j))$ $y_{ij} \sim \mathcal{P}(c\exp(x_{ij}))$

Probabilistic graphical models (PGMs)

Founders of Probability Theory

Blaise Pascal (1623-1662, France)

(1601-1665, France)

Laid the foundations of the probability theory in a correspondence on a dice game posed by a French nobleman

Sample Spaces – Measures of Events

Collection (list) of all possible outcomes **Experiment**: Roll a die!

- e.g.: All six faces of a die:

Experiment: Draw a card!

e.g.: All 52 cards in a deck:

Types of Events

Event

- Subset of sample space (set of outcomes of experiment)

Random event

- Different likelihoods of occurrence

Simple event

- Outcome from a sample space with one characteristic in simplest form
- e.g.: King of clubs from a deck of cards

Joint event

- Conjunction (AND, \land , ","); disjunction (OR, V)
- Contains several simple events
- e.g.: A red ace from a deck of cards *P*(red ace V ace of diamonds)
 (ace on hearts OR ace of diamonds)

Visualizing Events

Excellent ways of determining probabilities, can be built from data Contingency tables (nice way to look at probability):

			Ace	Not Ace	Total
Tree diagrams:		Black	2	24	26
		Red	2	24	26
		Total	4	48	52
		Red		Ace	
	Full	Car	ds	Not an Ace	
	Deck	Bla	ck	Ace	
	orcards	Car	ds – Not an Ace		

Maximum Likelihood Estimation (MLE)

- Uses relative frequencies as estimates
- Maximizes likelihood of training data D under a simple model M, or P(D|M)
- With discrete data, we can employ a *counting function* c(A=a), that returns frequency of a particular value taken on by attributeA
 - *Note*: c(A=a) is actually c(A=a, D), where D is a dataset
- **Issue:** What happens with sparse data?

You're thinking like a frequentist now!

An Example: A Unigram Language Model

 w_i is particular word in W, where W is set of unique words (or vocabulary)

Do not use history:

Probability of a word
given a word
sequence/history
$$P(w_i|w_1...w_{i-1}) \approx P(w_i) = \frac{c(w_i)}{\sum_{\tilde{w}} c(\tilde{w})}$$

i live in osaka . </s> P(nara i am a graduate student . </s> P(i) my school is in nara . </s> P(</s>

P(nara) = 1/20 = 0.05 P(i) = 2/20 = 0.1P(</s>) = 3/20 = 0.15

P(W=i live in nara . </s>) = $0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10^{-7}$

Axioms of Probability

Given 2 events: x, y

- 1) P(x OR y) = P(x) + P(y) P(x AND y);note for **mutually exclusive events** then P(x AND y) = 0
- 2) P(x and y) = P(x) * P(y | x), also written as P(y | x) = P(x and y)/P(x)
- 3) If x and y are *independent*, P(y | x) = P(y), thus P(x AND y) = P(x) * P(y)
- 4) P(x) > P(x) * P(y); P(y) > P(x) * P(y) [a property!]

Probability Mass Function (PMF)

- The domain of P must be the set of all possible states of \mathbf{x} .
- $\forall x \in x, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1, and no state can have a greater chance of occurring.
- $\sum_{x \in \mathbf{x}} P(x) = 1$. We refer to this property as being **normalized**. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.

Example: uniform distribution:

$$P(\mathbf{x} = x_i) = \frac{1}{k}$$

Probability Density Function (PDF)

- The domain of p must be the set of all possible states of \mathbf{x} .
- $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.

•
$$\int p(x)dx = 1.$$

Example: uniform distribution: $u(x; a, b) = \frac{1}{b-a}$.

Computing Marginal Probability with the Sum Rule

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y). \tag{3.3}$$

$$\mathbf{Summation} \to Discrete$$
random variables!

$$p(x) = \int p(x, y) dy.$$

(3.4)

Integration \rightarrow Continuous random variables!

Conditional Probability

$$P(y = y | x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

In probability theory, **conditional probability** is a measure of the probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred

Chain Rule of Probability

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)})$$

In probability theory, the **chain rule** (also called the **general product rule**) permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities

Bayes, in English Please?

- What does Bayes' Formula helps to find?
 - Helps us to find:

$$P(B \mid A)$$

• By having already known:

$$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}$$

Thomas Bayes, 1701-1761

