

Fundamentals of Probability

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/4/2024

Uncertainty

Let action A_t = leave for airport, minutes before flight Will A_t get me there on time?

Problems:

- partial observability (road state, other drivers' plans, etc.) 1_{\cdot}
- $\frac{2}{3}$. noisy sensors (traffic reports)
- uncertain (non-deterministic) action outcomes (flat tire, $etc.$)
- immense complexity of modeling and predicting traffic 4.

Set of actions:

{A_1, A_2,…A_t,…,A_T}

Hence a purely logical approach either

- risks falsehood: " A_{25} will get me there on time", or $1.$
- leads to conclusions that are too weak for decision $2.$ making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc.

 A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...

Probability in Context

Probability theory

- Branch of mathematics concerned with analysis of random phenomena
	- **Randomness**: a non-order or non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination
- Central objects of probability theory are: random variables, stochastic processes, and **events**
	- Mathematical abstractions of non-deterministic events or measured quantities that may either be single occurrences or evolve over time in an apparently random fashion

Uncertainty

- A lack of knowledge about an event
- Can be represented by a probability
	- Ex: role a die, draw a card
- Can be represented as an error

A statistic (a measure in **statistics**)

– Can use probability in determining that measure

Why? Probability allows us to build models of stochastic, data-generating processes….

Gaussian Linear State Space Model Kalman Filter $z_t \sim \mathcal{N}(z_t | Az_{t-1}, \sigma_z^2 I)$

 $y_t \sim \mathcal{N}(y_t|Bz_t, \sigma_y^2I)$

Latent Gaussian Cox Point Process $x \sim \mathcal{N}(x|\mu(i,j),\Sigma(i,j))$ $y_{ij} \sim \mathcal{P}(c \exp(x_{ij}))$

Probabilistic graphical models (PGMs)

Founders of Probability Theory

Blaise Pascal (1623-1662, France) Pierre Fermat

(1601-1665, France)

Laid the foundations of the probability theory in a correspondence on a dice game posed by a French nobleman

Sample Spaces – Measures of Events

Collection (list) of all possible outcomes **Experiment**: Roll a die!

– e.g.: All six faces of a die:

Experiment: Draw a card!

e.g.: All 52 cards in a deck:

Types of Events

Event

– Subset of sample space (set of outcomes of experiment)

Random event

– Different likelihoods of occurrence

Simple event

– Outcome from a sample space with one characteristic in simplest form

– e.g.: King of clubs from a deck of cards

Joint event

- Conjunction (AND, ∧, ","); disjunction (OR, ∨)
- Contains several simple events
- e.g.: A red ace from a deck of cards *P*(red ace ∨ ace of diamonds) (ace on hearts OR ace of diamonds)

Visualizing Events

Excellent ways of determining probabilities, can be built from data Contingency tables (nice way to look at probability):

Maximum Likelihood Estimation (MLE)

- Uses relative frequencies as estimates
- Maximizes likelihood of training data D under a simple model M, or *P*(D|M)
- With discrete data, we can employ a *counting function* **c(**A=a**)**, that returns frequency of a particular value taken on by attributeA
	- *Note*: $c(A=a)$ is actually $c(A=a, D)$, where *D* is a dataset
- **Issue:** What happens with sparse data?

You're thinking like a frequentist now!

An Example: A Unigram Language Model

 w_i is particular word in W, where *W* is set of unique words (or vocabulary)

• Do not use history:

Probability of a word
given a word
sequence/history\n
$$
P(w_i|w_1...w_{i-1}) \approx P(w_i) = \frac{c(w_i)}{\sum_{\tilde{w}} c(\tilde{w})}
$$

i live in osaka . </s> i am a graduate student \le /s> $P(i)$ my school is in nara. $\lt/$ s>

 $P(nara) = 1/20 = 0.05$ $= 2/20 = 0.1$ $P(\le$ /s>) = 3/20 = 0.15

 $P(W=i$ live in nara \le /s>) = $0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10^{-7}$

Axioms of Probability

Given 2 events: x, y

- 1) $P(x \text{ OR } y) = P(x) + P(y) P(x \text{ AND } y);$ note for **mutually exclusive events** then $P(x \text{ AND } y) = 0$
- 2) P(x and y) = P(x) * P(y | x), also written as P(y | x) = P(x and y)/P(x)
- 3) If x and y are *independent*, $P(y|x) = P(y)$, thus $P(x \text{ AND } y) = P(x) * P(y)$
- 4) $P(x) > P(x) * P(y);$ $P(y) > P(x) * P(y)$ [a property!]

Probability Mass Function (PMF)

- The domain of P must be the set of all possible states of x.
- $\forall x \in \mathbf{x}, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1, and no state can have a greater chance of occurring.
- $\sum_{x \in x} P(x) = 1$. We refer to this property as being **normalized**. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.

Example: uniform distribution:

$$
P(\mathbf{x} = x_i) = \frac{1}{k}
$$

Probability Density Function (PDF)

- The domain of p must be the set of all possible states of x.
- $\forall x \in \mathbf{x}, p(x) \geq 0$. Note that we do not require $p(x) \leq 1$.

•
$$
\int p(x)dx = 1
$$
.

Example: uniform distribution: $u(x;a,b) = \frac{1}{b-a}$.

Computing Marginal Probability with the Sum Rule

$$
\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y).
$$
\n**Summation** \rightarrow Discrete
\nrandom variables!

$$
p(x) = \int p(x, y) dy.
$$

 (3.4)

Integration → *Continuous* random variables!

Conditional Probability

$$
P(y = y | x = x) = \frac{P(y = y, x = x)}{P(x = x)}
$$

In probability theory, **conditional probability** is a measure of the probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred

Chain Rule of Probability

$$
P(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)})\Pi_{i=2}^{n}P(\mathbf{x}^{(i)} | \mathbf{x}^{(1)},\ldots,\mathbf{x}^{(i-1)})
$$

In probability theory, the **chain rule** (also called the **general product rule**) permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities

Bayes, in English Please?

- What does Bayes' Formula helps tofind?
	- Helps us to find:

$$
P(B|A)
$$

• By having already known:

$$
P(A \mid B) \qquad \qquad \text{Thomas Bayes, 1701-1761}
$$

$$
P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}
$$

