Strings and Languages

"It is always best to start at the beginning"

-- Glynda, the good witch of the North

What is a Language?

- A language is a <u>set of strings</u> made of of symbols from a given <u>alphabet</u>.
- An alphabet is a <u>finite set</u> of <u>symbols</u> (usually denoted by Σ)
 - Examples of alphabets:
 - {0, 1}
 - $\{\alpha, \beta, \chi, \delta, \epsilon, \phi, \gamma, \eta\}$
 - $\bullet \ \ \{a,\,b,\,c,\,d,\,e,\,f,\,g,\,h,\,i,\,j,\,k,\,l,\,m,\,n,\,o,\,p,\,q,\,r,\,s,\,t\,,\,u,\,v,\,w,\,x,\,y,\,$
 - z} • {a}

What is a string?

- A string over Σ is a <u>finite sequence</u> (possibly empty) of elements of Σ.
- ε denotes the *null string*, the string with no symbols.
 - Example strings over {a, b}
 - ε, a, aa, bb, aba, abbba
 - NOT strings over {a, b}
 - aaaa...., abca

The length of a string

- The <u>length</u> of a string *x*, denoted |*x*|, is the number of symbols in the string
 - Example:
 - |abbab| = 5
 - |a| = 1
 - |bbbbbbb| = 7
 - $|\varepsilon| = 0$

Strings and languages

- For any alphabet Σ, the set of all strings over Σ is denoted as Σ*.
- A language over Σ is a subset of Σ*
 Example
 - $\{a,b\}^* = \{\varepsilon, a, b, aa, bb, ab, ba, aaa, bbb, baa, ...\}$
 - Example Languages over {a,b}
 - {ε, a, b, aa, bb}
 - $\{x \in \{a,b\}^* \mid |x| = 8\}$ $\{x \in \{a,b\}^* \mid |x| \text{ is odd}\}$

Ø

• $\{x \in \{a,b\}^* | n_a(x) = n_b(x)\}$ { $\epsilon\}$ • $\{x \in \{a,b\}^* | n_a(x) = 2 \text{ and } x \text{ starts with } b\}$

Concatenation of String

- For $x, y \in \Sigma^*$
 - -xy is the <u>concatenation</u> of x and y.
 - x = aba, y = bbb, xy=ababbb
 - For all x, $\varepsilon x = x\varepsilon = x$
 - $-x^i$ for an integer i, indicates concatenation of x, i times
 - x = aba, $x^3 = abaabaaba$
 - For all $x, x^0 = \varepsilon$

Some string related definitions

- x is a <u>substring</u> of y if there exists $w, z \in \Sigma^*$ (possibly ε) such that y = wxz.
 - *car* is a substring of *carnage*, *descartes*, *vicar*, *car*, but not a substring of charity.
- x is a suffix of y if there exists $w \in \Sigma^*$ such that y = wx.
- x is a <u>prefix</u> of y if there exists $z \in \Sigma^*$ such that y = xz.

Operations on Languages

- Since languages are simply sets of strings, regular set operations can be applied:
 - For languages L_1 and L_2 over $\boldsymbol{\Sigma}^*$
 - $L_1 \cup L_2$ = all strings in L_1 or L_2
 - $L_1 \cap L_2$ = all strings in both L_1 and L_2
 - $L_1 L_2$ = strings in L_1 that are not in L_2
 - L' = $\Sigma^* L$

Concatenation of Languages

- If L_1 and L_2 are languages over Σ^*
 - $-L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$

- Example:

- $L_1 = \{\text{hope, fear}\}$
- $L_2 = \{less, fully\}$
- L₁L₂ = {hopeless, hopefully, fearless, fearfully}

Concatenation of Languages

- If L is a language over Σ^*
 - L^k is the set of strings formed by concatenating elements of L, k times.
 - Example:
 - L = {aa, bb}
 - L³ = {aaaaaa, aaaabb, aabbaa, aabbbb, bbbbbb, bbbbaa, bbaabb, bbaaaa}

• $L^0 = \{\epsilon\}$

Kleene Star Operation

• The set of strings that can be obtained by concatenating any number of elements of a language L is called the Kleene Star, L*

 \blacksquare Note that since, L* contains L0, ϵ is an element of L*

Kleene Star Operation

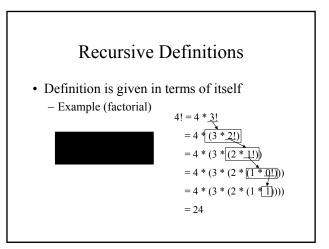
• The set of strings that can be obtained by concatenating one or more elements of a language L is denoted L⁺

Specifying Languages

- How do we specify languages?
 - If language is finite, you can list all of its strings.
 - $L = \{a, aa, aba, aca\}$
 - Using basic Language operations
 - L= $\{aa, ab\}^* \cup \{b\} \{bb\}^*$
 - Descriptive:
 - L = {x | $n_a(x) = n_b(x)$ }

Specifying Languages

- Next we will define how to specify languages recursively
- In future classes, we will describe how to specify languages by defining a mechanism for generating the language
- Any questions?



Recursive Definitions and Languages

- Languages can also be described by using a recursive definition
 - 1. Initial elements are added to your set (BASIS)
 - 2. Additional elements are added to your set by applying a rule(s) to the elements already in your set (INDUCTION)
 - 3. Complete language is obtained by applying step 2 infinitely

Recursive Definitions and Languages

- Example:
 - Recursive definition of Σ^*
 - 1. $\varepsilon \in \Sigma^*$
 - 2. For all $x \in \Sigma^*$ and all $a \in \Sigma$, $xa \in \Sigma^*$
 - Nothing else is in Σ* unless it can be obtained by a finite number of applications of rules 1 and 2.

Recursive Definitions and Languages

- Let's iterate through the rules for $\Sigma = \{a,b\}$
 - -i=0 $\Sigma^* = \{\epsilon\}$
 - -i=1 $\Sigma^* = \{\varepsilon, a, b\}$
 - -i=2 $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb\}$
 - -i=3 $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb \}$
 - ...and so on

Recursive Definitions and Languages

- Example:
 - Recursive definition of L*
 - $1.\epsilon \in L^*$
 - 2. For all $x \in L$ and all $y \in L$, $xy \in L^*$
 - 3.Nothing else is in L* unless it can be obtained by a finite number of applications of rules 1 and 2.

Recursive Definitions and Languages

- Let's iterate through the rules for L = {aa,bb}
 - -i=0 $L^* = \{\epsilon\}$
 - -i=1 L^{*} = { ϵ , aa, bb}
 - -i=2 L^{*} = { ϵ , aa, bb, aaaa, aabb, bbbb, bbaa}
 - $\label{eq:linear} \begin{array}{ll} -i=3 \quad L^*=\{\epsilon,\,aa,\,bb,\,aaaa,\,aabb,\,bbbb,\,bbaa,\,aaaaaa,\,aaaabb,\,aabbaa,\,aabbbb,\,bbbbaa,\,bbbbbb,\,\ldots\} \end{array}$
 - $-\ldots$ and so on

Recursive Definitions - another Example

- Example: Palindromes
 - A palindrome is a string that is the same read left to right or right to left
 - First half of a palindrome is a "mirror image" of the second half
 - Examples:
 - a, b, aba, abba, babbab.

Recursive Definitions – another Example

- Recursive definition for palindromes (pal) over Σ
 - $1. \ \epsilon \in pal$
 - 2. For any $a \in \Sigma$, $a \in pal$
 - 3. For any $x \in pal$ and $a \in \Sigma$, $axa \in pal$
 - 4. No string is in pal unless it can be obtained by rules 1-3

Recursive Definitions – another Example

- Let's iterate through the rules for pal over $\Sigma = \{a,b\}$
 - $i=0 \quad pal = \{\epsilon, a, b\}$
 - -i=1 pal = { ϵ , a, b, aaa, aba, bab, bbb}
 - -i=2 pal = { ϵ , a, b, aaa, aba, bab, bbb, aaaaa, aabaa, ababa, abbba, baaab, ababa, bbabb, bbbbb}

Recursive Definitions – yet another Example

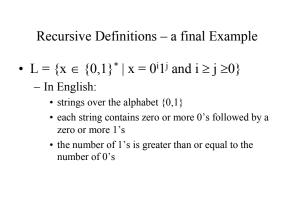
- Example: Fully parenthesized algebraic expressions (AE)
 - $-\Sigma = \{ a, (,), +, \}$
 - All expressions where the parens match correctly are in the language
 - Examples:
 - a, (a + a), (a + (a a)), ((a + a) (a + a)), etc.

Recursive Definitions – yet another Example

- Recursive definition for AE
 1.a ∈ AE
 - 2. For any $x, y \in AE(x + y)$ and $(x y) \in AE$
 - 3.No string is in pal unless it can be obtained by rules 1-2

Recursive Definitions - yet another Example

- Let's iterate through the rules for AE
 - -i=0 AE = {a}
 - -i=1 AE = { a, (a+a), (a-a) }
 - $\begin{array}{ll} -i{=}2 & AE = \{a,\,(a{+}a),\,(a{-}a)\,,\,(a+(\,\,a+a)),\\ (a-(a+a)),\,(\,a+(\,a-a)),\,(\,a-(\,a-a)), & ((a+a)+a),\,\,(\,(a+a)-a),\,\ldots\} \end{array}$



Recursive Definitions – a final Example

- $L = \{x \in \{0,1\}^* \mid x = 0^i 1^j \text{ and } i \ge j \ge 0\}$
- A recursive definition
 - $1. \quad \epsilon \in L$
 - 2. For any $x \in L$, both 0x and $0x1 \in L$
 - 3. No strings are in L unless it can be obtained using rules 1-2.

Later we will prove that this definition does indeed describe L.

Recursive Definitions and Languages

- Questions on Recursive Definition?
- Functions on strings and languages can also be defined recursively.

Structural Induction

- When dealing with languages, it is sometime cumbersome to restate the problems in terms of an integer.
- For languages described using a recursive definition, another type of induction, structural induction, is useful.

Structural Induction

• Principles

- Suppose
 - U is a set,
 - I is a subset of U (BASIS),
 - Op is a set of operations on U (INDUCTION).
 - L is a subset of U defined recursively as follows: $-I \subseteq L$
 - L is closed under each operation in Op
 - L is the smallest set satisfying 1 & 2

Structural Induction

- Then
 - To prove that every element of L has some property P, it is sufficient to show:
 - 1. Every element of I has property P
 - 2. The set of elements of L having property P is closed under Op
 - #2: If $x \in L$ has property P, Op(x) also must have property P

Structural Induction

- Recall this recursive definition of a language L
 - $1. \quad \epsilon \in L$
 - 2. For any $x \in L$, both 0x and $0x1 \in L$
- 3. No strings are in L unless it can be obtained using rules 1-2. And:
- $$\label{eq:alpha} \begin{split} A &= \{x \in \{0,1\}^* \mid x = 0^i 1^j \text{ and } i \geq j \geq 0\} \\ \text{Show } L \subseteq A \text{ by structural induction} \end{split}$$

Structural Induction

• Principles

- Suppose

- U is a set $U = \{a,b\}^*$
- I is a subset of U, $I = \{\epsilon\}$
- Op is a set of ops on U. $Op = \{0x, 0x1\}$
- L is a subset of U defined recursively as follows:

 $-I \subseteq L$

L is closed under each operation in Op
L is the smallest set satisfying 1 & 2.

Structural Induction

- To prove that every element of L has some property P:
 - Our property is:
 - $$\begin{split} A &= \{x \in \{0,1\}^* \mid x = 0^i 1^j \text{ and } i \geq j \geq 0\} \\ P(x) \text{ is true if } x \quad \in A. \end{split}$$

Structural Induction

To prove that every element of L has some property P, it is sufficient to show:
1.Every element of I has property P
In our case, must show that ε has property P, I.e. ε ∈ A, ε = 0ⁱ1^j · i ≥ j ≥0

Once again, this is the case where i=j=0

Structural Induction

2. The set of elements of L having property P is closed under Op If $x \in L$ has property P, Op(x) also must have property P

Assume x has property P, $x \in A, x = 0^{i} 1^{j} \cdot i \ge j \ge 0$ Op1(x) = 0x, which is an element of A Op2(x) = 0x1 which is an element of A

Similar proof to induction with no mention of an integer

Structural Induction

• Questions?

Summary

- Languages = set of strings
- Recursive Definition of Languages
- Structural Induction

Questions?

- Any questions?
- Next Time: – Our first machine: The Finite Automata!