Strings and Languages

“It is always best to start at the beginning”

-- Glynda, the good witch of the North

What is a Language?

» A language is a set of strings made of of symbols
from a given alphabet.

* An alphabet is a finite set of symbols (usually
denoted by X)
— Examples of alphabets:
< {0, 1}
s {ou Bx. 8,8 6,7, M)
« {a,b,c,d,e, f,g hij,k Lmmnop,qrst,uv,wXxy,
z}

- {a}

What is a string?

* A string over X'is a finite sequence
(possibly empty) of elements of .
* ¢ denotes the null string, the string with no
symbols.
— Example strings over {a, b}
* g, a, aa, bb, aba, abbba
— NOT strings over {a, b}

* aaaa...., abca

The length of a string

* The length of a string x, denoted |x|, is the
number of symbols in the string
— Example:
* labbab| =5
e la=1
+ |bbbbbbb| =7
*le|=0

Strings and languages

» For any alphabet Z, the set of all strings
over X is denoted as X"

* A language over X is a subset of ="

— Example
« {ab}" = {g, a, b, aa, bb, ab, ba, aaa, bbb, baa, ...}
— Example Languages over {a,b}
e {¢, a,b,aa, bb} (%)}
. {xefab) | x| =8} (x e{ab)* | x| is odd}
+ {xefab} In)=n,(x)} {e}
+ {x e{a,b}" | n,(x) =2 and x starts with b}




Concatenation of String

 Forx,ye &*

—xy is the concatenation of x and y.
* x =aba, y = bbb, xy=ababbb
e Forallx,ex=xe=x
— x! for an integer i, indicates concatenation of x, i
times
» x =aba, x3=abaabaaba
e Forallx,x=¢

Some string related definitions

* x is a substring of y if there exists w,z € >
(possibly €) such that y = wxz.
— car is a substring of carnage, descartes, vicar,
car, but not a substring of charity.
« xis a suffix of y if there exists w € X" such
that y = wx.

« xis a prefix of y if there exists z € X" such
that y = xz.

Operations on Languages

+ Since languages are simply sets of strings,
regular set operations can be applied:

— For languages L, and L, over X
*L,uL,=allstringsinL, orL,
* L, nL,=allstrings inboth L, and L,
* L,—L,=strings in L, that are notin L,
L =X"-L

Concatenation of Languages

« IfL, and L, are languages over X"
- LL,={xw|xeLlLandyelL,}
— Example:
» L, = {hope, fear}
* L, = {less, fully}

» L,L, = {hopeless, hopefully, fearless,
fearfully}

Concatenation of Languages

« IfL is a language over *
— LK is the set of strings formed by
concatenating elements of L, k times.
— Example:
* L= {aa, bb}

* L3 = {aaaaaa, aaaabb, aabbaa, aabbbb,
bbbbbb, bbbbaa, bbaabb, bbaaaa}

< L= {e}

Kleene Star Operation

 The set of strings that can be obtained by
concatenating any number of elements of a
language L is called the Kleene Star, L*

g Note that since, L contains L9, ¢ is an
element of L




Kleene Star Operation

» The set of strings that can be obtained by
concatenating one or more elements of a language
L is denoted L*

Specifying Languages

How do we specify languages?
— If language is finite, you can list all of its
strings.
* L= {a, aa, aba, aca}
— Using basic Language operations
« L= {aa, ab}* U {b} {bb}*
— Descriptive:

+ L= {x]n,(x)=n,(x)}

Specifying Languages

* Next we will define how to specify
languages recursively

* In future classes, we will describe how to
specify languages by defining a mechanism
for generating the language

* Any questions?

Recursive Definitions

Definition is given in terms of itself
— Example (factorial)

=24

Recursive Definitions and Languages

» Languages can also be described by using a
recursive definition
1. Initial elements are added to your set (BASIS)

2. Additional elements are added to your set by
applying a rule(s) to the elements already in
your set (INDUCTION)

3. Complete language is obtained by applying
step 2 infinitely

Recursive Definitions and Languages

Example:
— Recursive definition of =*

1. eeX”
2. Forallx e X*andalla e X, xae X"

3. Nothing else is in £* unless it can be obtained
by a finite number of applications of rules 1
and 2.




Recursive Definitions and Languages

* Let’s iterate through the rules for X~ = {a,b}
—i=0 ¥'={g}
—-i=1 T*={ga, b}
—i=2 ¥"={g, a, b, aa, ab, ba, bb}
—i=3 X"={g, a, b, aa, ab, ba, bb, aaa, aab, aba,
abb, baa, bab, bba, bbb}

—...and so on

Recursive Definitions and Languages

* Example:
— Recursive definition of L*

l.eel”
2.Forallx e Landally e L, xy € L*

3.Nothing else is in L* unless it can be obtained
by a finite number of applications of rules 1 and
2.

Recursive Definitions and Languages

o Let’s iterate through the rules for L = {aa,bb}
—i=0 L"={e}
—i=1 L"={g, aa, bb}
—1i=2 L"= {g, aa, bb, aaaa, aabb, bbbb, bbaa}
—i=3 L"= {g, aa, bb, aaaa, aabb, bbbb, bbaa, aaaaaa,
aaaabb, aabbaa, aabbbb, bbbbaa, bbbbbb, ...}

— ...and so on

Recursive Definitions — another Example

» Example: Palindromes
— A palindrome is a string that is the same read
left to right or right to left
— First half of a palindrome is a “mirror image”
of the second half
— Examples:
* a, b, aba, abba, babbab.

Recursive Definitions — another Example

* Recursive definition for palindromes (pal)
over X
1. &€ pal
2. Foranya e X, a € pal
3. Forany x epaland a € X, axa € pal
4.

No string is in pal unless it can be obtained by
rules 1-3

Recursive Definitions — another Example

 Let’s iterate through the rules for pal over £
= {a,b}
—i=0 pal={g, a, b}
—i=1 pal = {g, a, b, aaa, aba, bab, bbb}
—i=2 pal= {g, a, b, aaa, aba, bab, bbb, aaaaa,
aabaa, ababa, abbba, baaab, ababa, bbabb,
bbbbb}




Recursive Definitions — yet another Example

» Example: Fully parenthesized algebraic
expressions (AE)
—Z:{a,(,),+,-}
— All expressions where the parens match
correctly are in the language

— Examples:
*a,(ata),(at(a—a)),((ata)—(ata)),etc.

Recursive Definitions — yet another Example

» Recursive definition for AE

l.ae AE
2.Foranyx,y € AE (x ty)and (x—y) € AE

3.No string is in pal unless it can be obtained by
rules 1-2

Recursive Definitions — yet another Example

* Let’s iterate through the rules for AE
~i=0 AE={a}
—i=1 AE={a, (ata), (a-a)}
—i=2 AE = {a, (ata), (a-2), (a + (a+a)),
(a-(ata)),(at(a-a),(a-(a-a), (@a

+a)+a), ((a+ta)—a),...}

Recursive Definitions — a final Example

e L={xe {0,1}"|x=01andi>j>0}
— In English:
« strings over the alphabet {0,1}
« each string contains zero or more 0’s followed by a
zero or more 1’s
* the number of 1’s is greater than or equal to the
number of 0’s

Recursive Definitions — a final Example

e L={xe{0,1}"|x=01landi>j>0}
* A recursive definition

gel

Forany x € L, both Ox and Ox1 € L

3. No strings are in L unless it can be obtained using
rules 1-2.

Later we will prove that this definition does indeed
describe L.

Recursive Definitions and Languages

* Questions on Recursive Definition?

* Functions on strings and languages can also
be defined recursively.




Structural Induction

* When dealing with languages, it is
sometime cumbersome to restate the
problems in terms of an integer.

* For languages described using a recursive
definition, another type of induction,
structural induction, is useful.

Structural Induction

* Principles
— Suppose
« Uis a set,
* T is a subset of U (BASIS),
* Op is a set of operations on U (INDUCTION).

L is a subset of U defined recursively as follows:
-IcL
— L is closed under each operation in Op
— L is the smallest set satisfying 1 & 2

Structural Induction

e Then

— To prove that every element of L has some
property P, it is sufficient to show:
1. Every element of I has property P

2. The set of elements of L having property P is
closed under Op

#2:If x e L has property P, Op(x) also must have
property P

Structural Induction

— Recall this recursive definition of a language L
1. eelL
2. Foranyx e L, both Ox and Ox1 € L
3. No strings are in L unless it can be obtained using rules 1-2.
And:
A={xe {0,1}"|x=01iandi>j>0}
Show L A by structural induction

Structural Induction

* Principles

— Suppose
» Uisaset U= {ab}”
* Tis asubset of U, 1= {e}

* OpisasetofopsonU. Op={0x,0x1}

* L is a subset of U defined recursively as follows:
-IcL
— L is closed under each operation in Op
— L is the smallest set satisfying 1 & 2.

Structural Induction

» To prove that every element of L has some
property P:
— Our property is:
A={xe {0,1}*|x=0iliandi>j >0}
P(x)istrueifx € A.




Structural Induction Structural Induction

—To prove that every element of L has some 2. The set of elements of L having property P is closed under Op
property P. it is sufficient to show: If x € L has property P, Op(x) also must have property P
, :

1.Every element of I has property P Assume x has property P,

In our case, must show that € has property P, Le. € € xe A, x=01i>j>0
A,e=01-12j20 Opl(x) = 0x, which is an element of A
Op2(x) = 0x1 which is an element of A

Once again, this is the case where i=j=0
Similar proof to induction with no mention of an integer

Structural Induction Summary

* Questions? » Languages = set of strings
* Recursive Definition of Languages
+ Structural Induction

Questions?

* Any questions?

* Next Time:
— Our first machine: The Finite Automata!




