
1

Strings and Languages
“It is always best to start at the beginning”

-- Glynda, the good witch of the North

What is a Language?

• A language is a set of strings made of of symbols
from a given alphabet.

• An alphabet is a finite set of symbols (usually
denoted by Σ)
– Examples of alphabets:

• {0, 1}
• {α, β, χ, δ, ε, φ, γ, η}
• {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t , u, v, w, x, y,

z}
• {a}

What is a string?

• A string over Σ is a finite sequence
(possibly empty) of elements of Σ.

• ε denotes the null string, the string with no
symbols.
– Example strings over {a, b}

• ε, a, aa, bb, aba, abbba
– NOT strings over {a, b}

• aaaa…., abca

The length of a string

• The length of a string x, denoted |x|, is the
number of symbols in the string
– Example:

• |abbab| = 5
• |a| = 1
• |bbbbbbb| = 7
• | ε | = 0

Strings and languages

• For any alphabet Σ, the set of all strings
over Σ is denoted as Σ*.

• A language over Σ is a subset of Σ*

– Example
• {a,b}* = {ε, a, b, aa, bb, ab, ba, aaa, bbb, baa, …}

– Example Languages over {a,b}
• {ε, a, b, aa, bb} ∅
• {x ∈{a,b}* | |x| = 8} {x ∈{a,b}* | |x| is odd}
• {x ∈{a,b}* | na(x) = nb (x)} {ε}
• {x ∈{a,b}* | na(x) =2 and x starts with b}

2

Concatenation of String

• For x, y ∈ Σ*

– xy is the concatenation of x and y.
• x = aba, y = bbb, xy=ababbb
• For all x, ε x = xε = x

– xi for an integer i, indicates concatenation of x, i
times

• x = aba, x3 = abaabaaba
• For all x, x0 = ε

Some string related definitions

• x is a substring of y if there exists w,z ∈ Σ*

(possibly ε) such that y = wxz.
– car is a substring of carnage, descartes, vicar,

car, but not a substring of charity.

• x is a suffix of y if there exists w ∈ Σ* such
that y = wx.

• x is a prefix of y if there exists z ∈ Σ* such
that y = xz.

Operations on Languages

• Since languages are simply sets of strings,
regular set operations can be applied:
– For languages L1 and L2 over Σ*

• L1 ∪ L2 = all strings in L1 or L2

• L1 ∩ L2 = all strings in both L1 and L2

• L1 – L2 = strings in L1 that are not in L2

• L’ = Σ* – L

Concatenation of Languages

• If L1 and L2 are languages over Σ*

– L1L2 = {xy | x ∈ L1 and y ∈ L2 }
– Example:

• L1 = {hope, fear}
• L2 = {less, fully}
• L1L2 = {hopeless, hopefully, fearless,

fearfully}

Concatenation of Languages

• If L is a language over Σ*

– Lk is the set of strings formed by
concatenating elements of L, k times.

– Example:
• L = {aa, bb}
• L3 = {aaaaaa, aaaabb, aabbaa, aabbbb,

bbbbbb, bbbbaa, bbaabb, bbaaaa}
• L0 = {ε}

Kleene Star Operation

• The set of strings that can be obtained by
concatenating any number of elements of a
language L is called the Kleene Star, L*

...432

0

10* LLLLLLL
i

i ∪∪∪∪==
∞

=
U

Note that since, L* contains L0, ε is an
element of L*

3

Kleene Star Operation

• The set of strings that can be obtained by
concatenating one or more elements of a language
L is denoted L+

...432

1

1 LLLLLL
i

i ∪∪∪==
∞

=

+ U

Specifying Languages

• How do we specify languages?
– If language is finite, you can list all of its

strings.
• L = {a, aa, aba, aca}

– Using basic Language operations
• L= {aa, ab}* ∪ {b}{bb}*

– Descriptive:
• L = {x | na(x) = nb(x)}

Specifying Languages

• Next we will define how to specify
languages recursively

• In future classes, we will describe how to
specify languages by defining a mechanism
for generating the language

• Any questions?

Recursive Definitions

• Definition is given in terms of itself
– Example (factorial)

}
otherwise

0 if
)!1(*

1
! { =

−
=

n
nn

n

4! = 4 * 3!

= 4 * (3 * 2!)

= 4 * (3 * (2 * 1!))

= 4 * (3 * (2 * (1 * 0!)))

= 4 * (3 * (2 * (1 * 1))))

= 24

Recursive Definitions and Languages

• Languages can also be described by using a
recursive definition
1. Initial elements are added to your set (BASIS)
2. Additional elements are added to your set by

applying a rule(s) to the elements already in
your set (INDUCTION)

3. Complete language is obtained by applying
step 2 infinitely

Recursive Definitions and Languages

• Example:
– Recursive definition of Σ*

1. ε ∈ Σ*

2. For all x ∈ Σ* and all a ∈ Σ, xa ∈ Σ*

3. Nothing else is in Σ* unless it can be obtained
by a finite number of applications of rules 1
and 2.

4

Recursive Definitions and Languages

• Let’s iterate through the rules for Σ = {a,b}
– i=0 Σ* = {ε}
– i=1 Σ* = {ε, a, b}
– i=2 Σ* = {ε, a, b, aa, ab, ba, bb}
– i=3 Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba,

abb, baa, bab, bba, bbb}

– …and so on

Recursive Definitions and Languages

• Example:
– Recursive definition of L*

1.ε ∈ L*

2.For all x ∈ L and all y ∈ L, xy ∈ L*

3.Nothing else is in L* unless it can be obtained
by a finite number of applications of rules 1 and
2.

Recursive Definitions and Languages

• Let’s iterate through the rules for L = {aa,bb}
– i=0 L* = {ε}
– i=1 L* = {ε, aa, bb}
– i=2 L* = {ε, aa, bb, aaaa, aabb, bbbb, bbaa}
– i=3 L* = {ε, aa, bb, aaaa, aabb, bbbb, bbaa, aaaaaa,

aaaabb, aabbaa, aabbbb, bbbbaa, bbbbbb, …}

– …and so on

Recursive Definitions – another Example

• Example: Palindromes
– A palindrome is a string that is the same read

left to right or right to left
– First half of a palindrome is a “mirror image”

of the second half
– Examples:

• a, b, aba, abba, babbab.

Recursive Definitions – another Example

• Recursive definition for palindromes (pal)
over Σ

1. ε ∈ pal
2. For any a ∈ Σ, a ∈ pal
3. For any x ∈pal and a ∈ Σ, axa ∈ pal
4. No string is in pal unless it can be obtained by

rules 1-3

Recursive Definitions – another Example

• Let’s iterate through the rules for pal over Σ
= {a,b}
– i=0 pal = {ε, a, b}
– i=1 pal = {ε, a, b, aaa, aba, bab, bbb}
– i=2 pal = {ε, a, b, aaa, aba, bab, bbb, aaaaa,

aabaa, ababa, abbba, baaab, ababa, bbabb,
bbbbb}

5

Recursive Definitions – yet another Example

• Example: Fully parenthesized algebraic
expressions (AE)
– Σ = { a, (,), +, - }
– All expressions where the parens match

correctly are in the language
– Examples:

• a, (a + a), (a + (a – a)), ((a + a) – (a + a)), etc.

Recursive Definitions – yet another Example

• Recursive definition for AE
1.a ∈ AE
2.For any x, y ∈ AE (x + y) and (x – y) ∈ AE
3.No string is in pal unless it can be obtained by

rules 1-2

Recursive Definitions – yet another Example

• Let’s iterate through the rules for AE
– i=0 AE = {a}
– i=1 AE = { a, (a+a), (a-a) }
– i=2 AE = {a, (a+a), (a-a) , (a + (a + a)),

(a – (a + a)), (a + (a – a)), (a – (a – a)), ((a
+ a) + a), ((a + a) – a), …}

Recursive Definitions – a final Example

• L = {x ∈ {0,1}* | x = 0i1j and i ≥ j ≥0}
– In English:

• strings over the alphabet {0,1}
• each string contains zero or more 0’s followed by a

zero or more 1’s
• the number of 1’s is greater than or equal to the

number of 0’s

Recursive Definitions – a final Example

• L = {x ∈ {0,1}* | x = 0i1j and i ≥ j ≥0}
• A recursive definition

1. ε ∈ L
2. For any x ∈ L, both 0x and 0x1 ∈ L
3. No strings are in L unless it can be obtained using

rules 1-2.

Later we will prove that this definition does indeed
describe L.

Recursive Definitions and Languages

• Questions on Recursive Definition?

• Functions on strings and languages can also
be defined recursively.

6

Structural Induction

• When dealing with languages, it is
sometime cumbersome to restate the
problems in terms of an integer.

• For languages described using a recursive
definition, another type of induction,
structural induction, is useful.

Structural Induction

• Principles
– Suppose

• U is a set,
• I is a subset of U (BASIS),
• Op is a set of operations on U (INDUCTION).
• L is a subset of U defined recursively as follows:

– I ⊆ L
– L is closed under each operation in Op
– L is the smallest set satisfying 1 & 2

Structural Induction

• Then
– To prove that every element of L has some

property P, it is sufficient to show:
1. Every element of I has property P
2. The set of elements of L having property P is

closed under Op

#2: If x ∈ L has property P, Op(x) also must have
property P

Structural Induction

– Recall this recursive definition of a language L
1. ε ∈ L
2. For any x ∈ L, both 0x and 0x1 ∈ L
3. No strings are in L unless it can be obtained using rules 1-2.

And:
A = {x ∈ {0,1}* | x = 0i1j and i ≥ j ≥0}

Show L ⊆ A by structural induction

Structural Induction

• Principles
– Suppose

• U is a set U = {a,b}*

• I is a subset of U, I = {ε}
• Op is a set of ops on U. Op = {0x, 0x1}
• L is a subset of U defined recursively as follows:

– I ⊆ L
– L is closed under each operation in Op
– L is the smallest set satisfying 1 & 2.

Structural Induction

• To prove that every element of L has some
property P:
– Our property is:

A = {x ∈ {0,1}* | x = 0i1j and i ≥ j ≥0}
P(x) is true if x ∈ A.

7

Structural Induction

– To prove that every element of L has some
property P, it is sufficient to show:

1.Every element of I has property P
In our case, must show that ε has property P, I.e. ε ∈
A, ε = 0i1j , i ≥ j ≥0

Once again, this is the case where i=j=0

Structural Induction
2. The set of elements of L having property P is closed under Op

If x ∈ L has property P, Op(x) also must have property P

Assume x has property P,
x ∈ A, x = 0i1j , i ≥ j ≥0

Op1(x) = 0x, which is an element of A
Op2(x) = 0x1 which is an element of A

Similar proof to induction with no mention of an integer

Structural Induction

• Questions?

Summary

• Languages = set of strings
• Recursive Definition of Languages
• Structural Induction

Questions?

• Any questions?

• Next Time:
– Our first machine: The Finite Automata!

